系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (12): 4005-4011.doi: 10.12305/j.issn.1001-506X.2025.12.01

• 电子技术 • 上一篇    

基于GCN的无人机目标航迹关联

张文中, 侯长波, 赵鹏旗, 刘思成   

  1. 哈尔滨工程大学信息与通信工程学院,黑龙江 哈尔滨 150001
  • 收稿日期:2024-09-03 修回日期:2024-11-26 出版日期:2025-03-13 发布日期:2025-03-13
  • 通讯作者: 侯长波
  • 作者简介:张文中(2000—),男,硕士研究生,主要研究方向为多传感器信息融合、深度学习
    赵鹏旗(2002—),男,博士研究生,主要研究方向为多传感器信息融合、目标状态估计
    刘思成(2001—),男,硕士研究生,主要研究方向为多模态融合、数字信号处理器开发应用

UAV target track correlation based on GCN

Wenzhong ZHANG, Changbo HOU, Pengqi ZHAO, Sicheng LIU   

  1. School of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China
  • Received:2024-09-03 Revised:2024-11-26 Online:2025-03-13 Published:2025-03-13
  • Contact: Changbo HOU

摘要:

针对目前多传感器航迹关联算法存在的因复杂电磁环境、航迹密度较大、航迹信息提取不充分导致准确率较低的问题,将航迹关联问题表征为深度学习领域中的分类问题,提出基于图卷积网络(graph convolutional network,GCN)的无人机目标航迹关联方法。通过将不同量测误差的传感器探测目标数据转化为图数据,采用关联对处理,输入GCN进行特征提取,实现航迹正确关联。仿真结果表明,在相同的仿真条件下,所提方法优于对比算法,能够充分提取航迹高维特征,并且兼顾先前的航迹信息,有较好的研究前景和研究价值。

关键词: 航迹关联, 深度学习, 机器学习, 图卷积网络

Abstract:

Aiming at the problem of low accuracy caused by complex electromagnetic environments, high track density, and insufficient extraction of track information in the current multi-sensor track correlation algorithm, the track correlation problem characterizes as a classification problem in the field of deep learning, and an unmanned aerial vehicle target track correlation method is proposed based on graph convolutional network (GCN). By converting the target data detected by sensors with different measurement errors into graph data, using correlation pair processing, and inputting it into GCN for feature extraction, the correct track correlation is realized. The simulation results show that under the same simulation conditions, the proposed method is superior to the contrast algorithms, which can fully extract the high-dimensional features of the track and take into account the previous track information, and has good research prospects and research value.

Key words: track correlation, deep learning, machine learning, graph convolutional network (GCN)

中图分类号: