系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (3): 938-950.doi: 10.12305/j.issn.1001-506X.2025.03.26

• 制导、导航与控制 • 上一篇    

卫星导航接收机射频前端非线性失真建模综述

刘嘉俊, 鲁祖坤, 肖伟, 李宗楠, 刘哲   

  1. 国防科技大学电子科学学院, 湖南 长沙 410073
  • 收稿日期:2024-04-17 出版日期:2025-03-28 发布日期:2025-04-18
  • 通讯作者: 鲁祖坤
  • 作者简介:刘嘉俊 (2002—), 男, 硕士研究生, 主要研究方向为卫星导航抗干扰
    鲁祖坤 (1989—), 男, 高级工程师, 博士, 主要研究方向为星基导航与定位、卫星导航抗干扰
    肖伟 (1992—), 男, 讲师, 博士, 主要研究方向为卫星导航
    李宗楠 (1990—), 女, 讲师, 博士, 主要研究方向为卫星导航高精度定位、多源融合导航
    刘哲 (1987—), 男, 讲师, 博士, 主要研究方向为星基导航与定位
  • 基金资助:
    国家自然科学基金(U20A0193);湖南省科技创新计划(2021RC3073)

Review of nonlinear distortion modeling in RF front end of satellite navigation receivers

Jiajun LIU, Zukun LU, Wei XIAO, Zongnan LI, Zhe LIU   

  1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
  • Received:2024-04-17 Online:2025-03-28 Published:2025-04-18
  • Contact: Zukun LU

摘要:

卫星导航接收机射频(radio frequency, RF)前端的非线性效应威胁导航设备的正常工作, 是卫星导航接收机抗干扰性能进一步提升的瓶颈。建立设备非线性效应的行为模型是解决非线性问题的重要方法。随着卫星导航接收机种类多样化、干扰环境复杂化, 已有的非线性模型显现出对卫星导航接收机针对性研究不足、干扰环境下可靠性不足和建模方法不适配的问题。因此, 综述主流的非线性效应行为级建模方法, 评述各建模方法的优点与不足, 介绍机器学习技术在非线性行为级建模的应用。最后, 根据对已有建模技术特点的总结与面临的问题, 对未来卫星导航接收机非线性建模技术的发展做出展望。

关键词: 卫星导航接收机, 非线性失真, 行为模型, 机器学习

Abstract:

The nonlinear effect of radio frequency (RF) front end of satellite navigation receiver threatens the normal operation of navigation equipment, which is the bottleneck to further improve the anti-interference performance of satellite navigation receiver. It is an important method to establish the behavior model of nonlinear effect of equipment. With the variety of satellite navigation receivers and the complexity of interference environment, the existing nonlinear models are shown the problems of insufficient targeted research on satellite navigation receivers, insufficient reliability under interference environment, and unsuitable modeling methods. Therefore, this paper summarizes the mainstream modeling methods of nonlinear effect behavior level, reviews the advantages and disadvantages of each modeling method, and introduces the application of machine learning technology in nonlinear behavior level modeling. Finally, based on the summary of the characteristics of existing modeling technologies and the problems faced, the future development of nonlinear behavior modeling technology of satellite navigation receiver is prospected.

Key words: satellite navigation receiver, nonlinear distortion, behavior model, machine learning

中图分类号: