系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (3): 938-950.doi: 10.12305/j.issn.1001-506X.2025.03.26
• 制导、导航与控制 • 上一篇
刘嘉俊, 鲁祖坤, 肖伟, 李宗楠, 刘哲
收稿日期:
2024-04-17
出版日期:
2025-03-28
发布日期:
2025-04-18
通讯作者:
鲁祖坤
作者简介:
刘嘉俊 (2002—), 男, 硕士研究生, 主要研究方向为卫星导航抗干扰基金资助:
Jiajun LIU, Zukun LU, Wei XIAO, Zongnan LI, Zhe LIU
Received:
2024-04-17
Online:
2025-03-28
Published:
2025-04-18
Contact:
Zukun LU
摘要:
卫星导航接收机射频(radio frequency, RF)前端的非线性效应威胁导航设备的正常工作, 是卫星导航接收机抗干扰性能进一步提升的瓶颈。建立设备非线性效应的行为模型是解决非线性问题的重要方法。随着卫星导航接收机种类多样化、干扰环境复杂化, 已有的非线性模型显现出对卫星导航接收机针对性研究不足、干扰环境下可靠性不足和建模方法不适配的问题。因此, 综述主流的非线性效应行为级建模方法, 评述各建模方法的优点与不足, 介绍机器学习技术在非线性行为级建模的应用。最后, 根据对已有建模技术特点的总结与面临的问题, 对未来卫星导航接收机非线性建模技术的发展做出展望。
中图分类号:
刘嘉俊, 鲁祖坤, 肖伟, 李宗楠, 刘哲. 卫星导航接收机射频前端非线性失真建模综述[J]. 系统工程与电子技术, 2025, 47(3): 938-950.
Jiajun LIU, Zukun LU, Wei XIAO, Zongnan LI, Zhe LIU. Review of nonlinear distortion modeling in RF front end of satellite navigation receivers[J]. Systems Engineering and Electronics, 2025, 47(3): 938-950.
1 | 刘小汇,王怡晨,文超,等.复杂城市环境下的全球导航卫星系统/捷联惯性导航系统组合导航算法[J].电子与信息学报,2023,45(11):4150-4160. |
LIUX H,WANGY C,WENC,et al.Global navigation satellite system/strapdown inertial navigation system integrated navigation algorithm in complex urban environment[J].Journal of Electronics and Information Technology,2023,45(11):4150-4160. | |
2 | 刘晗冰. 单通道饱和干扰抑制技术的研究[D]. 长沙: 国防科技大学, 2020. |
LIU H B. Research on single-channel anti-saturation technology[D]. Changsha: National University of Defense Technology, 2020. | |
3 |
宋捷,鲁祖坤,刘哲,等.卫星导航时域自适应抗干扰技术综述[J].系统工程与电子技术,2023,45(4):1164-1176.
doi: 10.12305/j.issn.1001-506X.2023.04.25 |
SONGJ,LUZ K,LIUZ,et al.Review on the time domain interference suppression of navigation receiver[J].Systems Engineering and Electronics,2023,45(4):1164-1176.
doi: 10.12305/j.issn.1001-506X.2023.04.25 |
|
4 |
ZHAOX,HUANGX M,SUNG F.BOCC: a new modulation based on chirp subcarriers for future BeiDou LEO navigation-augmented signal[J].Electronics Letters,2021,57(1):36-38.
doi: 10.1049/ell2.12009 |
5 |
LUZ K,SONGJ,HUANGL,et al.Distortionless 1/2 overlap windowing in frequency domain anti-jamming of satellite navigation receivers[J].Remote Sensing,2022,14(8):1801-1818.
doi: 10.3390/rs14081801 |
6 | 高琳钧. 抗干扰卫星导航终端射频接收前端芯片设计[D]. 成都: 电子科技大学, 2022. |
GAO J L. Design of RF front-end receiving chip for antijamming satellite navigation terminal[D]. Chendu: University of Electronic Science and Technology of China, 2022. | |
7 | XUE P, YANG H B, XU Z, et al. Effect of nonlinearities in wireless communication with digital receiver[C]//Proc. of the IEEE Wireless Communications and Networking Conference, 2013: 4037-4042. |
8 |
NAW C,ZHANGW R,YANS X,et al.Automated neural network-based multiphysics parametric modeling of microwave components[J].IEEE Access,2019,7,141153-141160.
doi: 10.1109/ACCESS.2019.2944162 |
9 |
ZHANGQ J,GUPTAK C,DEVABHAKTUNIV K.Artificial neural networks for RF and microwave design-from theory to practice[J].IEEE Trans.on Microwave Theory and Techniques,2003,51(4):1339-1350.
doi: 10.1109/TMTT.2003.809179 |
10 | MESSAOUD M A, GHANNOUCHI F M, BARRAK R, et al. SDR based multi-band subsampling receivers for GNSS applications[C]//Proc. of the IEEE International Conference on Advanced Technologies for Signal and Image Processing, 2014: 497-501. |
11 | MOGHADDAMM H,AGHDAMS R,MAZZALIN,et al.Statistical modeling and analysis of power amplifier nonlinearities in communication systems[J].IEEE Trans.on Communications,2021,70(2):822-835. |
12 | HANR L,JIANGC Y,YANGG C,et al.Complexity-optimized adaptive model for multiband digital predistortion of RF power amplifiers[J].IEEE Trans.on Microwave Theory and Techniques,2023,72(6):3410-3422. |
13 |
AL-KANANH,YANGX Z,LIF.Saleh model and digital predistortion for power amplifiers in wireless communications using the third-order intercept point[J].Journal of Electronic Testing,2019,35(3):359-365.
doi: 10.1007/s10836-019-05801-3 |
14 |
AL-KANANH,LIF.A simplified accuracy enhancement to the Saleh AM/AM modeling and linearization of solid-state RF power amplifiers[J].Electronics,2020,9(11):1806-1818.
doi: 10.3390/electronics9111806 |
15 |
MARTINSJ P,CABRALP M,CARVALHON B,et al.A metric for the quantification of memory effects in power amplifiers[J].IEEE Trans.on Microwave Theory and Techniques,2006,54(12):4432-4439.
doi: 10.1109/TMTT.2006.882871 |
16 | ELLIS N, ROBLIN P, GAUDREAU J, et al. Identifying quasi-identical power amplifiers through EVM and NMSE measurements of output data using digital post distortion[C]//Proc. of the IEEE 102nd ARFTG Microwave Measurement Conference, 2024: 31-33. |
17 |
GALAVIZ-AGUILARJ A,ROBLINP,CÁRDENAS-VALDEZJ R,et al.Comparison of a genetic programming approach with ANFIS for power amplifier behavioral modeling and FPGA implementation[J].Soft Computing,2019,23(7):2463-2481.
doi: 10.1007/s00500-017-2941-8 |
18 | SCHETZENM.The Volterra and Wiener theories of nonlinear systems[M].Malabar:Krieger Publishing,2006. |
19 | ZHAIL Y,ZHAIH T,ZHOUZ W,et al.Suboptimum custom-tailored model based on the pruned Volterra series for power amplifiers[J].IEICE Electronics Express,2014,11(17):693-706. |
20 | KEEHRE A,HAJIMIRIA.Multi-mode/multi-band RF transceivers for wireless communications: advanced techniques, architectures, and trends[M].Hoboken:Wiley,2010:309-345. |
21 |
KEEHRE A,HAJIMIRIA.Equalization of third-order intermodulation products in wideband direct conversion receivers[J].IEEE Journal of Solid-State Circuits,2008,43(12):2853-2867.
doi: 10.1109/JSSC.2008.2005701 |
22 | DELAMOTTE T, SCHWARZ R, KNOPP A. On the accuracy of simplified Volterra series models for multicarrier satellite systems using faster-than-Nyquist signaling[C]//Proc. of the 33rd AIAA International Communications Satellite Systems Conference and Exhibition, 2015: 54-64. |
23 |
DINGL,ZHOUG T,MORGAND R,et al.A robust digital baseband predistorter constructed using memory polynomials[J].IEEE Trans.on Communications,2004,52(1):159-165.
doi: 10.1109/TCOMM.2003.822188 |
24 |
MORGAND R,MAZ,KIMJ,et al.A generalized memory polynomial model for digital predistortion of RF power amplifiers[J].IEEE Trans.on Signal Processing,2006,54(10):3852-3860.
doi: 10.1109/TSP.2006.879264 |
25 |
ZHUA,PEDROJ C,BRAZILT J.Dynamic deviation reduction-based Volterra behavioral modeling of RF power amplifiers[J].IEEE Trans.on Microwave Theory and Techniques,2006,54(12):4323-4332.
doi: 10.1109/TMTT.2006.883243 |
26 |
WANGS Q,ABI-HUSSEINM,VENARDO,et al.A novel algorithm for determining the structure of digital predistortion models[J].IEEE Trans.on Vehicular Technology,2018,67(8):7326-7340.
doi: 10.1109/TVT.2018.2833283 |
27 |
SONGB,HES B,PENGJ,et al.Dynamic deviation memory polynomial model for digital predistortion[J].Electronics Letters,2017,53(9):606-607.
doi: 10.1049/el.2017.0226 |
28 | 谭松. MIMO时分复用数字预失真技术研究[D]. 成都: 电子科技大学, 2021. |
TAN S. Research on digital pre-distortion technology of MIMO time division multiplexing[D]. Chengdu: University of Electronic Science and Technology of China, 2021. | |
29 | HU W X, WU Y L, YANG M S, et al. A low complexity hybrid memory polynomial model for digital predistortion of RF power amplifier[C]//Proc. of the IEEE International Conference on Microwave and Millimeter Wave Technology, 2023: 81-83. |
30 | SOLEIMAN E, PHAM D K G, JABBOUR C, et al. Physically-derived 3-box power amplifier model[C]//Proc. of the 17th IEEE International New Circuits and Systems Conference, 2019: 120-123. |
31 | BAIE W.Frequency domain identification of Hammerstein models[J].IEEE Trans.on Automatic Control,2010,48(4):161-180. |
32 |
MEHBOOBA,LAYTONK J,LECHNERG,et al.Wiener predistorter for nonlinear satellite downlinks[J].International Journal of Satellite Communications and Networking,2023,41(4):392-405.
doi: 10.1002/sat.1474 |
33 | 李敏玥. 基于多项式的接收机非线性行为建模方法研究[D]. 西安: 西安电子科技大学, 2020. |
LI M Y. Research on receiver nonlinear behavioral modeling method based on polynomial[D]. Xi'an: Xidian University, 2020. | |
34 |
LIUT,BOUMAIZAS,GHANNOUCHIF M.Deembedding static nonlinearities and accurately identifying and modeling memory effects in wide-band RF transmitters[J].IEEE Trans.on Microwave Theory and Techniques,2005,53(11):3578-3587.
doi: 10.1109/TMTT.2005.857105 |
35 |
LIUT,BOUMAIZAS,GHANNOUCHIF M.Augmented Hammerstein predistorter for linearization of broad-band wireless transmitters[J].IEEE Trans.on Microwave Theory and Techniques,2006,54(4):1340-1349.
doi: 10.1109/TMTT.2006.871230 |
36 |
MOONJ,KIMB.Enhanced Hammerstein behavioral model for broadband wireless transmitters[J].IEEE Trans.on Microwave Theory and Techniques,2011,59(4):924-933.
doi: 10.1109/TMTT.2011.2110659 |
37 |
XUG M,LIUT J,YEY,et al.Generalized two-box cascaded nonlinear behavioral model for radio frequency power amplifiers with strong memory effects[J].IEEE Trans.on Microwave Theory and Techniques,2014,62(12):2888-2899.
doi: 10.1109/TMTT.2014.2365459 |
38 |
MORGAND R,MAZ,KIMJ,et al.A generalized memory polynomial model for digital predistortion of RF power amplifiers[J].IEEE Trans.on Signal Processing,2006,54(10):3852-3860.
doi: 10.1109/TSP.2006.879264 |
39 |
ZHUA D.Decomposed vector rotation-based behavioral modeling for digital predistortion of RF power amplifiers[J].IEEE Trans.on Microwave Theory and Techniques,2015,63(2):737-744.
doi: 10.1109/TMTT.2014.2387853 |
40 | WANG S J, TANG X Q, YU C, et al. Partition analysis of DVR model for broadband GaN doherty PA under different nonlinear states[C]//Proc. of the IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, 2022: 1045-1047. |
41 |
KELLYN,ZHUA.Low-complexity stochastic optimization-based model extraction for digital predistortion of RF power amplifiers[J].IEEE Trans.on Microwave Theory and Techniques,2016,64(5):1373-1382.
doi: 10.1109/TMTT.2016.2547383 |
42 |
DENGW,YAOR,ZHAOH M,et al.A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm[J].Soft Computing,2019,23,2445-2462.
doi: 10.1007/s00500-017-2940-9 |
43 |
ZHAIJ F,ZHANGL,YUZ Q,et al.A modified canonical piecewise-linear function-based behavioral model for wideband power amplifiers[J].IEEE Microwave and Wireless Components Letters,2016,26(3):195-197.
doi: 10.1109/LMWC.2016.2524512 |
44 | CAO W H, LI Y, ZHU A D. Magnitude-selective affine function based digital predistorter for RF power amplifiers in 5G small-cell transmitters[C]//Proc. of the IEEE MTT-S International Microwave Symposium, 2017: 1539-1541. |
45 | 刘尊严, 陈章, 赵晨, 等. 基于复合分段模型的数字预失真技术[EB/OL]. [2024-04-08]. http://kns.cnki.net/kcms/detail/32.1493.TN.20240109.0926.002.html. |
LIU Z Y, CHEN Z, ZHAO C, et al. Digital predistortion technology based on composite piecewise function model[EB/OL]. [2024-04-08]. http://kns.cnki.net/kcms/detail/32.1493.TN.20240109.0926.002.html. | |
46 | HANR L,JIANGC Y,YANGG C,et al.Decomposed vector combination-based low-complexity behavioral model for digital predistortion of RF transmitters[J].IEEE Trans.on Broadcasting,2023,70(1):334-346. |
47 |
ZHUA,DRAXLERP J,YANJ J,et al.Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series[J].IEEE Trans.on Microwave Theory and Techniques,2008,56(7):1524-1534.
doi: 10.1109/TMTT.2008.925211 |
48 | 林鑫. 基于独立参数估计的低复杂度数字预失真研究[D]. 合肥: 中国科学技术大学, 2020. |
LIN X. Low computational complexity digital predistortion based on independent parameters estimation[D]. Hefei: University of Science and Technology of China, 2020. | |
49 | WANG Z M, DOOLEY J, FINNERTY K, et al. Selection of compressed training data for RF power amplifier behavioral modeling[C]//Proc. of the 10th European Microwave Integrated Circuits Conference, 2015: 53-56. |
50 |
KRALJ,GOTTHANST,MARSALEKR,et al.On feedback sample selection methods allowing lightweight digital predistorter adaptation[J].IEEE Trans.on Circuits and Systems I: Regular Papers,2020,67(6):1976-1988.
doi: 10.1109/TCSI.2020.2975532 |
51 |
GUANL,ZHUA D.Optimized low-complexity implementation of least squares based model extraction for digital predistortion of RF power amplifiers[J].IEEE Trans.on Microwave Theory and Techniques,2012,60(3):594-603.
doi: 10.1109/TMTT.2011.2182656 |
52 |
YANGG C,QIAOW,JIANGC Y,et al.Generalized ridge regression-based few-sample learning digital predistortion[J].IEEE Microwave and Wireless Components Letters,2022,32(6):603-606.
doi: 10.1109/LMWC.2022.3148407 |
53 |
CRESPO-CADENASC,MADERO-AYORAM J,BECERRAJ A,et al.A sparse-Bayesian approach for the design of robust digital predistorters under power-varying operation[J].IEEE Trans.on Microwave Theory and Techniques,2022,70(9):4218-4230.
doi: 10.1109/TMTT.2022.3157586 |
54 | YANGG C,QIAOW,JIANGC Y,et al.Memory feature-based sample selection strategy for few-sample learning digital predistortion[J].IEEE Trans.on Microwave Theory and Techniques,2022,71(2):602-612. |
55 | WANGT,GILABERTP L.Mesh-selecting for computational efficient PA behavioral modeling and DPD linearization[J].IEEE Microwave and Wireless Components Letters,2020,31(1):37-40. |
56 | GILABERT P L, MONTORO G, LÓPEZ D, et al. Order reduction of wideband digital predistorters using principal component analysis[C]//Proc. of the IEEE MTT-S International Microwave Symposium Digest, 2013: 1248-1251. |
57 | WANG T, GILABERT P L, MONTORO G. Under-sampling effects and computational cost reduction in RF power amplifier behavioral modeling[C]//Proc. of the 10th European Microwave Integrated Circuits Conference, 2015: 57-60. |
58 | PHAM Q A, LOPEZ-BUENO D, MONTORO G, et al. Adaptive principal component analysis for online reduced order parameter extraction in PA behavioral modeling and DPD linearization[C]//Proc. of the IEEE/MTT-S International Microwave Symposium, 2018: 160-163. |
59 |
ZHAOQ B,ZHANGL Q,CICHOCKIA.Multilinear and nonlinear generalizations of partial least squares: an overview of recent advances[J].Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,2014,4(2):104-115.
doi: 10.1002/widm.1120 |
60 |
PHAMQ A,LOPEZ-BUENOD,WANGT,et al.Partial least squares identification of multi look-up table digital predistorters for concurrent dual-band envelope tracking power amplifiers[J].IEEE Trans.on Microwave Theory and Techniques,2018,66(12):5143-5150.
doi: 10.1109/TMTT.2018.2857819 |
61 | 林鑫,刘发林,李泓旻,等.基于偏最小二乘的低复杂度数字预失真[J].微波学报,2021,37(1):64-69. |
LINS,LIUF L,LIH W,et al.Low computational complexity digital predistortion based on partial least squares[J].Journal of Microwave,2021,37(1):64-69. | |
62 | LOUROJ,NUNESL C,BARRADASF M,et al.A Hammerstein-like broadband ANN-based transistor behavioral model[J].IEEE Trans.on Microwave Theory and Techniques,2023,72(6):3288-3299. |
63 |
LIUT J,BOUMAIZAS,GHANNOUCHIF M.Dynamic behavioral modeling of 3G power amplifiers using real-valued time-delay neural networks[J].IEEE Trans.on Microwave Theory and Techniques,2004,52(3):1025-1033.
doi: 10.1109/TMTT.2004.823583 |
64 |
RAWATM,GHANNOUCHIF M.A mutual distortion and impairment compensator for wideband direct-conversion transmitters using neural networks[J].IEEE Trans.on Broadcasting,2012,58(2):168-177.
doi: 10.1109/TBC.2012.2189338 |
65 | WANGD M,AZIZM,HELAOUIM,et al.Augmented real-valued time-delay neural network for compensation of distortions and impairments in wireless transmitters[J].IEEE Trans.on Neural Networks and Learning Systems,2018,30(1):242-254. |
66 | HUX,LIUZ J,YUX F,et al.Convolutional neural network for behavioral modeling and predistortion of wideband power amplifiers[J].IEEE Trans.on Neural Networks and Learning Systems,2021,33(8):3923-3937. |
67 |
ZHANGY K,LIY,LIUF L,et al.Vector decomposition based time-delay neural network behavioral model for digital predistortion of RF power amplifiers[J].IEEE Access,2019,7,91559-91568.
doi: 10.1109/ACCESS.2019.2927875 |
68 | CHEN P, YU Y C, YU C. Long short-term memory networks for behavioral modeling of a GAN sequential power amplifier[C]// Proc. of the IEEE International Conference on Integrated Circuits, Technologies and Applications, 2022: 146-147. |
69 | 陈豪,刘太君,叶焱,等.基于广义LSTM神经网络的宽带射频功放数字预失真线性化[J].微波学报,2020,36(3):71-75. |
CHENH,LIUT J,YEY,et al.Digital pre-distortion linearization based on generalized LSTM neural networks for wideband RF power amplifiers[J].Journal of Microwave,2020,36(3):71-75. | |
70 | PHARTIYAL D, RAWAT M. LSTM-deep neural networks based predistortion linearizer for high power amplifiers[C]//Proc. of the National Conference on Communications, 2019. |
71 | LIU T J, YE Y, YIN S Y, et al. Digital predistortion linearization with deep neural networks for 5G power amplifiers[C]//Proc. of the European Microwave Conference in Central Europe, 2019: 216-219. |
72 |
SUNJ L,SHIW J,YANGZ T,et al.Behavioral modeling and linearization of wideband RF power amplifiers using BiLSTM networks for 5G wireless systems[J].IEEE Trans.on Vehicular Technology,2019,68(11):10348-10356.
doi: 10.1109/TVT.2019.2925562 |
73 |
LIH M,ZHANGY K,LIG,et al.Vector decomposed long short-term memory model for behavioral modeling and digital predistortion for wideband RF power amplifiers[J].IEEE Access,2020,8,63780-63789.
doi: 10.1109/ACCESS.2020.2984682 |
74 |
KOBALT,ZHUA D.Digital predistortion of RF power amplifiers with decomposed vector rotation-based recurrent neural networks[J].IEEE Trans.on Microwave Theory and Techniques,2022,70(11):4900-4909.
doi: 10.1109/TMTT.2022.3209658 |
75 |
LIG,ZHANGY K,LIH M,et al.Instant gated recurrent neural network behavioral model for digital predistortion of RF power amplifiers[J].IEEE Access,2020,8,67474-67483.
doi: 10.1109/ACCESS.2020.2986816 |
76 | CHU J M, CHEN W H, CHEN L, et al. A cascaded memory polynomial-neural network behavior model for digital predistortion[C]//Proc. of the IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, 2020. |
77 | 汪世杰. 基于机器学习算法的射频功放行为建模研究[D]. 杭州: 杭州电子科技大学, 2023. |
WANG S J. Research on behavior modelling of RF power amplifier based on machine learning algorithms[D]. Hangzhou: Hangzhou Dianzi University, 2023. | |
78 |
LIY,WANGX Y,PANGJ Z,et al.Boosted model tree-based behavioral modeling for digital predistortion of RF power amplifiers[J].IEEE Trans.on Microwave Theory and Techniques,2021,69(9):3976-3988.
doi: 10.1109/TMTT.2021.3081096 |
79 | 周志华.机器学习[M].北京:清华大学出版社,2016. |
ZHOUZ H.Machine learning[M].Beijing:Tsinghua University Press,2016. | |
80 | CAI J L, YU C, SUN L L, et al. Support vector regression-based dynamic behavioral modeling for RF power amplifiers[C]// Proc. of the IEEE MTT-S International Wireless Symposium, 2018: 294-296. |
81 | CAIJ L,YUC,SUNL L,et al.Dynamic behavioral modeling of RF power amplifier based on time-delay support vector regression[J].IEEE Trans.on Microwave Theory and Techniques,2018,67(2):533-543. |
82 |
XUJ,JIANGW L,MAL H,et al.Augmented time-delay twin support vector regression-based behavioral modeling for digital predistortion of RF power amplifier[J].IEEE Access,2019,7,59832-59843.
doi: 10.1109/ACCESS.2019.2915281 |
83 | TONG T, ZHAO Y S, YU Y C, et al. Behavioral model for RF power amplifiers with dynamic transmission based on pattern sensing and deep neural network[C]//Proc. of the International Conference on Microwave and Millimeter Wave Technology, 2023: 2413-2415. |
84 |
JARAUTP,ABDELHAFIZA,CHENINIH,et al.Augmented convolutional neural network for behavioral modeling and digital predistortion of concurrent multiband power amplifiers[J].IEEE Trans.on Microwave Theory and Techniques,2021,69(9):4142-4156.
doi: 10.1109/TMTT.2021.3075689 |
85 | WANGM H,JIAH G,WUS,et al.Res-GAN for behavioral modeling and pre-distortion of power amplifiers in OFDM-based satellite communication system[J].IEEE Trans.on Vehicular Technology,2023,73(2):2132-2141. |
86 |
WUH B,CHENW H,LIUX,et al.A uniform neural network digital predistortion model of RF power amplifiers for scalable applications[J].IEEE Trans.on Microwave Theory and Techniques,2022,70(11):4885-4899.
doi: 10.1109/TMTT.2022.3205930 |
87 | 邱锡鹏.神经网络与深度学习[M].北京:机械工业出版社,2020. |
QIUX P.Neural network and deep learning[M].Beijing:China Machine Press,2020. | |
88 |
NAGHIBIZ,SADROSSADATS A,SAFARIS.Dynamic behavioral modeling of nonlinear circuits using a novel recurrent neural network technique[J].International Journal of Circuit Theory and Applications,2019,47(7):1071-1085.
doi: 10.1002/cta.2631 |
89 | HANR L,QIAOW,JIANGC Y,et al.Low complexity adaptive model for digital predistortion of rf power amplifiers in time-varying configurations[J].IEEE Trans.on Microwave Theory and Techniques,2022,71(5):2004-2015. |
[1] | 潘晨辉, 鲜勇, 马培洋, 倪晚成, 赵晓楠, 李少朋. 兵棋推演态势认知的态势数学表达方法[J]. 系统工程与电子技术, 2025, 47(3): 883-892. |
[2] | 王希, 任惠, 王威, 张嘉怡, 赵洪山. URLLC场景下信道可靠连通度预测[J]. 系统工程与电子技术, 2024, 46(5): 1810-1819. |
[3] | 季然, 肖茂森, 李硕, 刘宇, 罗湛仪, 程嘉维. 基于机器学习的MRTD客观测试方法研究[J]. 系统工程与电子技术, 2024, 46(10): 3265-3270. |
[4] | 刘文波, 姚翼荣, 张弓, 胡文. 超维计算概念、应用及研究进展[J]. 系统工程与电子技术, 2023, 45(7): 1938-1956. |
[5] | 王湖升, 陈伯孝, 叶倾知. 基于箔条干扰实测数据的对抗方法研究[J]. 系统工程与电子技术, 2023, 45(7): 2010-2021. |
[6] | 宋捷, 鲁祖坤, 刘哲, 肖志斌, 党超, 王芝应, 孙广富. 卫星导航时域自适应抗干扰技术综述[J]. 系统工程与电子技术, 2023, 45(4): 1164-1176. |
[7] | 冯伟, 龙以君, 全英汇, 邢孟道. 基于SMOTE和深度迁移卷积神经网络的多类不平衡遥感图像分类算法研究[J]. 系统工程与电子技术, 2023, 45(12): 3715-3725. |
[8] | 王春政, 胡明华, 杨磊, 赵征. 空中交通延误预测研究综述[J]. 系统工程与电子技术, 2022, 44(3): 863-874. |
[9] | 张心宇, 刘源, 宋佳凝. 基于LSTM神经网络的短期轨道预报[J]. 系统工程与电子技术, 2022, 44(3): 939-947. |
[10] | 赵凯, 魏光辉. 高阶非线性失真双频阻塞干扰规律[J]. 系统工程与电子技术, 2022, 44(1): 47-53. |
[11] | 赵凡, 金虎. 基于GAN的通信干扰波形生成技术[J]. 系统工程与电子技术, 2021, 43(4): 1080-1088. |
[12] | 宋波, 叶伟, 孟祥辉. 基于多智能体强化学习的动态频谱分配方法综述[J]. 系统工程与电子技术, 2021, 43(11): 3338-3351. |
[13] | 彭芳, 吴军, 王帅, 向建军. 基于SVRGD的机载预警雷达自适应波束形成算法[J]. 系统工程与电子技术, 2021, 43(1): 83-90. |
[14] | 霍晓磊, 赵宏志, 刘颖, 崔佩璋, 全厚德, 唐友喜. 基于抵消技术的邻道干扰抑制[J]. 系统工程与电子技术, 2019, 41(11): 2611-2618. |
[15] | 张菁, 何友, 彭应宁, 李刚. 新一代战斗机技术特征论证[J]. 系统工程与电子技术, 2018, 40(8): 1754-1759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||