1 |
LI W J , CHENG D Y , LIU X G , et al. On-orbit service (OOS) of spacecraft: a review of engineering developments[J]. Progress in Aerospace Sciences, 2019, 108, 32- 120.
doi: 10.1016/j.paerosci.2019.01.004
|
2 |
YANG G , JI J , WEI Y H X . A collision-free visual servoing method for two space manipulators capturing tumbling satellites[J]. Proceedings of the Institution of Mechanical Engineers, Part C. Journal of Mechanical Engineering Science, 2024, 238 (6): 2251- 2266.
doi: 10.1177/09544062231190536
|
3 |
GUDALL C, CABRIALES J, DUNBAR B J, et al. Finite element analysis (FEA) model of the Apollo A7LB extravehicular activity (EVA) suit sleeve[C]//Proc. of the IEEE Aerospace Conference, 2024.
|
4 |
HARVILL L, COWLEY M, RAJULU S. Human performance in simulated reduced gravity environments: JSCCN-32456[R]. Washington, D.C. : NASA, 2014.
|
5 |
HOFFMANN B. Human thermal analysis of traverse and geology tasks during simulated Lunar extravehicular activity[C]//Proc. of the IEEE Aerospace Conference, 2023.
|
6 |
ZHAO Z H, YIN Z, KANG Y, et al. The design and implementation of extravehicular experiments support system for manned spacecrafts[C]//Proc. of the 2nd International Symposium on Aerospace Engineering and Systems, 2023: 53-58.
|
7 |
STROMGREN C, LYNCH C, BURKE C, et al. Evaluating extravehicular activity access options for a Lunar surface habitat[C]//Proc. of the IEEE Aerospace Conference, 2023.
|
8 |
CHEN C I , CHEN Y T , WU S C . Experiment and simulation in design of the board-level drop testing tower apparatus[J]. Experiment Techniques, 2012, 36 (2): 60- 69.
doi: 10.1111/j.1747-1567.2011.00755.x
|
9 |
SAWADA H , UI K , MORI M . Micro-gravity experiment of a space robotic arm using parabolic flight[J]. Advanced Robotics, 2004, 18 (3): 247- 267.
doi: 10.1163/156855304322972431
|
10 |
姚燕生, 梅涛. 空间操作的地面模拟方法——水浮法[J]. 机械工程学报, 2008, 44 (3): 182- 188.
|
|
YAO Y S , MEI T . Simulation method of space operation on the ground-buoyancy method[J]. Journal of Mechanical Engineering, 2008, 44 (3): 182- 188.
|
11 |
刘延芳, 刘兴富, 齐乃明. 超低干扰力矩微纳卫星姿控半物理仿真平台[J]. 系统工程与电子技术, 2017, 39 (8): 1808- 1814.
|
|
LIU Y F , LIU X F , QI N M . Hardware-in-loop simulation platform with super-low disturbance torque for attitude control system of micro and nano-satellites[J]. Systems Engineering and Electronics, 2017, 39 (8): 1808- 1814.
|
12 |
高海波, 牛福亮, 刘振, 等. 悬吊式微低重力环境模拟技术研究现状与展望[J]. 航空学报, 2021, 42 (1): 80- 99.
|
|
GAO H B , NIU F L , LIU Z , et al. Suspended micro-low gravity environment simulation technology: status quo and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (1): 80- 99.
|
13 |
XIU W W, RUBLE K, MA O. A reduced-gravity simulator for physically simulating human walking in microgravity or reduced-gravity environment[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2014: 4837-4843.
|
14 |
宋天翔, 乔兵. 一种无源被动式人体低重力模拟系统的力学性能仿真分析[J]. 载人航天, 2023, 29 (5): 569- 580.
|
|
SONG T X , QIAO B . Kinematics simulation and analysis of a passive human body reduced-gravity simulation system[J]. Manned Spaceflight, 2023, 29 (5): 569- 580.
|
15 |
JIA J , JIA Y M , SUN S H . Preliminary design and development of an active suspension gravity compensation system for ground verification[J]. Mechanism and Machine Theory, 2018, 128, 492- 507.
doi: 10.1016/j.mechmachtheory.2018.06.018
|
16 |
HE J P , KRAM R , MCMACHON T A . Mechanics of sunning under simulated low gravity[J]. Journal of Applied Physiology, 1991, 71 (3): 863- 870.
doi: 10.1152/jappl.1991.71.3.863
|
17 |
GRIFFIN T M , TOLANI N A , KRAM R . Walking in simulated reduced gravity: mechanical energy fluctuations and exchange[J]. Journal of Applied Physology, 1999, 86 (1): 383- 390.
|
18 |
LETKO W, SPADY A A. Walking in simulated lunnar gravity[C]// Proc. of the 4th Symposium on the Role of the Vestibular Organs in Space Exploration, 1970: 347-351.
|
19 |
PERUSEK G P, DEWITT J K, CAVANAGH P R. Zero-gravity locomotion simulators: New ground-based analogs for microgravity exercise simulation[EB/OL]. [2024-02-27]. https://ntrs.nasa.gov/citations/20080006841.
|
20 |
NORCROSS J R, CHAPPELL S P, CLLOWERS K G. Characterization of partial-gravity analog environments for extravehicular activity suit testing: NASA-TM-2020-216139[R]. Washington, D.C. : NASA, 2020.
|
21 |
刘荣强, 郭宏伟, 邓宗全. 空间索杆铰接式伸展臂设计与试验研究[J]. 宇航学报, 2009, 30 (1): 315- 320.
|
|
LIU R Q , GUO H W , DENG Z Q . Space cable-strut deployable articutlated mast design and experiment study[J]. Journal of Astronauts, 2009, 30 (1): 315- 320.
|
22 |
YUAN F , CHEN D S , PAN C H , et al. Application of optimal-jerk trajectory planning in gait-balance training robot[J]. Chinese Journal of Mechanical Engineering, 2022, 35, 2.
doi: 10.1186/s10033-021-00665-1
|
23 |
KIM M G , CHO S , TRAN T Q . Scaled jump in gravity-reduced virtual environments[J]. IEEE Trans.on Visualization and Computer Graphics, 2017, 23 (4): 1360- 1368.
doi: 10.1109/TVCG.2017.2657139
|
24 |
YI W M , ZHENG Y , WANG W F , et al. Optimal design and force control of a nine-cable-driven parallel mechanism for lunar takeoff simulation[J]. Chinese Journal of Mechanical Engineering, 2019, 32, 73.
doi: 10.1186/s10033-019-0382-2
|
25 |
HUAN S, DENG H. Research on gravity compensation technology for extravehicular activity training facilitiy[C]//Proc. of the 15th International Conference on Man-Machine-Environment System Engineering, 2015: 355-363.
|
26 |
刘振, 高海波, 邓宗全. 星球车地面低重力模拟系统设计[J]. 机器人, 2013, 35 (6): 750- 756.
|
|
LIU Z , GAO H B , DENG Z Q . Design of the low gravity simulation system for planetary rovers[J]. Robot, 2013, 35 (6): 750- 756.
|
27 |
VALLE P. Reduce gravity testing of robots (and humans) using active response gravity offload system: JSC-CN-40487[R]. Washington, D.C. : NASA, 2017.
|
28 |
SCHLOTMAN T E. A preliminary assessment of physical demand during simulated Lunar surface extravehicular activities[C]// Proc. of the IEEE Aerospace Conference, 2023.
|
29 |
YANG Z, SUN Y B, LEI Y Q, et al. Realization and experimental test of a body wright support unit for simultaneous position tracking and gravity offloading[C]// Proc. of IEEE the International Conference on Robotics and Biomimetics, 2016: 1064-1068.
|
30 |
高扬. 悬吊法机水平随动控制系统设计[D]. 哈尔滨: 哈尔滨理工大学, 2017: 16-50.
|
|
GAO Y. Design of horizontal servo control system by suspension method[D]. Harbin: Harbin University of Science and Technology, 2017: 16-50.
|
31 |
JIA J, JIA Y M, SUN S H. Adaptive sliding mode control for an active gravity offload system[C]//Proc. of the Chinese Intelligent Automation Conference, 2017: 461-569.
|
32 |
SOPHIE O , JAMES C , JESSE R , et al. Effects of walking, running, and skipping under simulated reduced gravity using the NASA active response gravity offload system (ARGOS)[J]. Acta Astronautica, 2022, 197, 115- 125.
doi: 10.1016/j.actaastro.2022.05.014
|