系统工程与电子技术 ›› 2019, Vol. 41 ›› Issue (12): 2855-2863.doi: 10.3969/j.issn.1001-506X.2019.12.26

• 制导、导航与控制 • 上一篇    下一篇

大排量水下滑翔机建模与扰动抑制方法

郭亭亭1, 宋大雷1,2, 李娟3, 臧文川1   

  1. 1. 中国海洋大学工程学院, 山东 青岛 266100;  2. 青岛海洋科学与技术试点国家实验室, 山东 青岛 266109;  3. 青岛农业大学机电工程学院, 山东 青岛 266109
  • 出版日期:2019-11-25 发布日期:2019-11-26

The modeling and disturbance rejection method for large-load underwater gliders

GUO Tingting1, SONG Dalei1,2, LI Juan3, ZANG Wenchuan1   

  1. 1. College of Engineering, Ocean University of China, Qingdao 266100, China;
    2. Pilot National Laboratory for Marine Science and Technology, Qingdao 266109, China; 3. College of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao 266109, China
  • Online:2019-11-25 Published:2019-11-26

摘要:

目前已有的动力学模型无法准确描述大排量滑翔机的动力学特征,而常规控制器针对滑翔机大时滞强耦合系统控制效果并不理想。针对上述问题,综合考虑浮力驱动机构中内外油囊的质量和质心位置矢量变化,建立了大排量滑翔机的双质点变质量变位置矢量模型。在建模的基础上,通过考虑扰动和实际工作特性,对滑翔机俯仰角和速度回路进行了比例-积分-微分(proportional-integral-derivative,PID)控制器和抗扰控制算法设计对比实验。结果表明,自抗扰控制器控制精度更高、响应速度更快、超调更小,滑翔机灵活性更高、续航更长。而且,由于自抗扰控制器的抑制内外扰动能力更强,更适合复杂海洋环境下的运动控制。

关键词: 水下滑翔机, 动力学建模, 大排量浮力驱动, 扰动抑制, 自抗扰控制

Abstract:

At present, the existing dynamic model can not describe the motion characteristics of large-load glider accurately, and the conventional controllers are not ideal for the glider system with large time-delay and strong coupling. Aiming at these problems, the quality change of the internal and external oil sac is taken into account in the buoyancy driving mechanism and the centroid position vector change caused by the flow of hydraulic oil in the internal and external oil sac, further establishes the vector model with two particles and variable mass and variable position for the large-load underwater glider, which provides the theoretical guidance for the design and control of the glider. Based on the established model, the PID control method and the Active disturbance rejection control (ADRC) method are designed and the contrast experiments are done on both the pitch angle and velocity loop for glider by considering the influence of coupling disturbance and combining with the glider system parameters and actual working characteristics. The results show that the ADRC controller has higher control accuracy, faster response speed and lower overshoot than the PID controller, which make the glider have higher flexibility and longer endurance. Moreover, the ADRC controller is more suitable for the strong coupling large-load glider systems in complex marine environments due to the stronger ability of rejecting the internal and external disturbances.

Key words: underwater glider, motion modeling, large-load buoyancy drive, disturbance rejection, active disturbance rejection control (ADRC)