系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (5): 1810-1819.doi: 10.12305/j.issn.1001-506X.2024.05.34
• 通信与网络 • 上一篇
王希, 任惠, 王威, 张嘉怡, 赵洪山
收稿日期:
2023-03-10
出版日期:
2024-04-30
发布日期:
2024-04-30
通讯作者:
王希
作者简介:
王希(1998—), 男, 硕士研究生, 主要研究方向为5G通信业务应用及其可靠性基金资助:
Xi WANG, Hui REN, Wei WANG, Jiayi ZHANG, Hongshan ZHAO
Received:
2023-03-10
Online:
2024-04-30
Published:
2024-04-30
Contact:
Xi WANG
摘要:
第五代移动通信技术(5th generation, 5G)中高可靠低时延通信(ultra reliability and low latency communication, URLLC)应用场景, 十分契合航空5G机场场面宽带移动通信系统建设要求。以丢包率为定义的可靠性指标没有反应时变无线信道的时间依赖性和不同URLLC服务所需的持续时间。针对以上存在的问题, 运用生存分析的方法, 将URLLC关键技术与可靠性理论中失效率相结合, 提出了可靠连通度指标, 基于接收端信号强度, 建立理论分布模型和数据驱动模型, 对时变信道在未来1子帧内可靠连通度进行预测, 并建立城市宏单元-非视距-簇时延线信道模型算例对模型进行对比分析, 并在不同雨衰条件下, 分析信道系统的可靠连通度。结果表明,数据驱动模型可靠性预测的均方误差(mean square error, MSE)可达0.1%,优于理论分布模型,且在恶劣天气情况下,多输入多输出信道可靠性相比于多输入单输出信道具有更高的抗衰落能力。
中图分类号:
王希, 任惠, 王威, 张嘉怡, 赵洪山. URLLC场景下信道可靠连通度预测[J]. 系统工程与电子技术, 2024, 46(5): 1810-1819.
Xi WANG, Hui REN, Wei WANG, Jiayi ZHANG, Hongshan ZHAO. Channel connectivity reliability prediction in URLLC scenario[J]. Systems Engineering and Electronics, 2024, 46(5): 1810-1819.
1 | 3GPP. Study on scenarios and requirements for next generation access technologies[S]. Nice: European Telecommunications Standards Institute, 2017. |
2 | HOESSLER T, SCHEUVENS L, FRANCHI N, et al. Applying reliability theory for future wireless communication networks[C]//Proc. of the IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, 2017. |
3 |
HOESSLERT,SIMSEKM,FETTWEISG P.Mission reliabi-lity for URLLC in wireless networks[J].IEEE Communications Letters,2018,22(11):2350-2353.
doi: 10.1109/LCOMM.2018.2868956 |
4 |
BALAPUWADUGEI A M,LIF Y,PLAV.System times and channel availability for secondary transmissions in CRNs: a dependability-theory-based analysis[J].IEEE Trans.on Vehicular Technology,2017,66(3):2771-2788.
doi: 10.1109/TVT.2016.2585200 |
5 |
ANGJELICHINOSKIM,TRILLINGSGAARDK F,POPOVSKIP.A statistical learning approach to ultra-reliable low latency communication[J].IEEE Trans.on Communications,2019,67(7):5153-5166.
doi: 10.1109/TCOMM.2019.2907241 |
6 |
POPOVSKIP,NIELSENJ,ANGJELICHINOSKIM,et al.Wireless access in ultra-reliable low-latency communication (URLLC)[J].IEEE Trans.on Communications,2019,67(8):5783-5801.
doi: 10.1109/TCOMM.2019.2914652 |
7 | 聂倩. 面向B5G高速移动通信系统的基于深度学习的信道预测方法研究[D]. 南京: 南京邮电大学, 2022. |
NIE Q. Research on deep learning-based channel prediction method for B5G high-speed mobile communication system[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022. | |
8 | 黄骏,唐慧,柴利.基于卷积神经网络的5G无线信道参数学习方法[J].武汉科技大学学报,2022,45(2):149-154. |
HUANGJ,TANGH,CHAIL.A learning method for 5g wireless channel parameters based on convolutional netural network[J].Journal of Wuhan University of Science and Technology,2022,45(2):149-154. | |
9 |
HUB,YANGL H,RENL L.Deep learning-based time-varying channel estimation with basis expansion model for MIMO-OFDM system[J].High Technology Letters,2022,28(3):288-294.
doi: 10.3772/j.issn.1006-6748.2022.03.008 |
10 |
SUND C,LIUZ J,MAS,et al.Channel prediction using IAA-based spectral estimation in precoded TDD-MIMO systems[J].IEEE Communications Letters,2013,17(4):701-704.
doi: 10.1109/LCOMM.2013.022713.122906 |
11 |
WANGX S,WANGJ T,HEL Z,et al.Outage analysis for downlink NOMA with statistical channel state information[J].IEEE Wireless Communications Letters,2018,7(2):142-145.
doi: 10.1109/LWC.2017.2761343 |
12 |
YANZ,OUYANGB,ZHANGX,et al.Secrecy outage performance of opportunistic relay selection with limited CSI feedback[J].IEEE Wireless Communications Letters,2019,8(6):1626-1630.
doi: 10.1109/LWC.2019.2932673 |
13 |
JIANGR H,XIONGK,FANP Y,et al.Outage probability and throughput of multirelay SWIPT-WPCN networks with nonlinear EH model and imperfect CSI[J].IEEE Systems Journal,2020,14(1):1206-1217.
doi: 10.1109/JSYST.2019.2940490 |
14 | 季策,田博彦,耿蓉,等.基于VSCBOMP算法的FBMC/OQAM系统信道估计[J].系统工程与电子技术,2023,45(4):1193-1199. |
JIC,TIANB Y,GENGR,et al.FBMC/OQAM system channel estimation based on VSCBOMP algorithm[J].Systems Engineering and Electronics,2023,45(4):1193-1199. | |
15 | 聂倩,杨丽花,呼博,等.基扩展模型下基于LSTM神经网络的时变信道预测方法[J].系统工程与电子技术,2022,44(9):2971-2977. |
NIEQ,YANGL H,HUB,et al.Time-varying channel prediction method based on LSTM neural networks under basis expansion model[J].Systems Engineering and Electronics,2022,44(9):2971-2977. | |
16 | 3GPP. Digital cellular telecommunications system (Phase 2+) (GSM); universal mobile telecommunications system (UMTS); LTE; 5G; release 17 description; summary of Rel-17 work Items[S]. Nice: European Telecommunications Standards Institute, 2023. |
17 | 张新勋. 基于极化分集和频率分集技术的MIMO雷达抗干扰与目标检测方法研究[D]. 西安: 西安电子科技大学, 2019. |
ZHANG X X. Study on anti-jamming and target detection approaches of MIMO radar based on polarization and frequency diversity[D]. Xi'an: Xidian University, 2019. | |
18 |
SOFIM A,SAURAVK,KOULS K.Four-port orthogonal circularly polarized dual-band MIMO antenna with polarization and spatial diversity using a dual-band linear-to-circular polarization converter[J].IEEE Trans.on Antennas and Propagation,2022,70(9):8554-8559.
doi: 10.1109/TAP.2022.3161493 |
19 | KALACHIKOV A A, SHELKUNOV N S. Performance eva-luation of the detection algorithms for mimo spatial multiple xing based on analytical wireless MIMO channel models[C]//Proc. of the XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering, 2018: 180-183. |
20 | 3GPP. 5G; service requirements for next generation new services and markets[S]. Nice: European Telecommunications Standards Institute, 2018. |
21 | LIJ L,MAS G.Survival analysis in medicine and genetics[M].Karabas:CRC Press,2013. |
22 | MATZ S M, VOTTA L G, MALKAWI M. Analysis of failure a nd recovery rates in a wireless telecommunications system[C]//Proc. of the International Conference on Dependable Systems and Networks, 2002: 687-693. |
23 |
LAITINENE K.Survival analysis and financial distress prediction: finnish evidence[J].Review of Accounting and Finance,2005,4(4):76-90.
doi: 10.1108/eb043438 |
24 |
SAMARAKOONS,BENNISM,SAADW,et al.Predictive ultra-reliable communication: a survival analysis perspective[J].IEEE Communications Letters,2021,25(4):1221-1225.
doi: 10.1109/LCOMM.2020.3047446 |
25 | CHENL,MAY F.Shamanskii-like levenberg-marquardt method with a new line search for systems of nonlinear equations[J].Journal of Systems Science & Complexity,2020,33(5):1694-1707. |
26 | 董丽峰,肖莹,刘群.LTE关键技术3D-MIMO[J].科技创新与应用,2016,(34):86. |
DONGL F,XIAOY,LIUQ.LTE key technology 3D-MIMO[J].Technology Innvation and Application,2016,(34):86. | |
27 | 3GPP. Study on channel model for frequencies from 0.5 to 100 GHz[S]. Nice: European Telecommunications Standards Institute, 2022. |
28 | 李岸宁. 铁路5G专网无线通信信道特征分析与建模[D]. 北京: 中国铁道科学研究院, 2022. |
LI A N. Characteristic analysis and modeling of wireless communication channels in railway 5G dedicated network[D]. Beijing: China Academy of Railway Science, 2022. | |
29 | 罗泽文. 面向5G毫米波通信应用的射频前端模块研究[D]. 广州: 华南理工大学, 2021. |
LUO Z W. Study of RF front-end modules for 5G millimeter wave communication[D]. Guangzhou: South China University of Technology, 2021. | |
30 | LUO Z W, CHEN H D, CHE W Q, et al. Study of 28 GHz transceiver module integrated with LO source for 5G mmWave communication[C]//Proc. of the IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, 2020. |
31 | LUO Z W, CHEN H D, FENG L P, et al. Development of a T/R module for 5G Millimeter wave communication[C]// Proc. of the IEEE MTT-S International Wireless Symposium, 2021. |
32 | 中华人民共和国国家质量检测检验委总局, 中国国家标准化管理委员会. 降水量等级(GB/T 28592-2012)[S]. 北京: 中国标准出版社, 2012. |
General Administration of Quality Inspection and Testing Commission of The People's Republic of China, China National Standardization Administration. Precipitation levels (GB/T 28592-2012)[S]. Beijing: China Standard Publishing House, 2012. |
[1] | 李贵杰, 詹扬, 李大伟, 夏广庆. 考虑不确定性情况下的故障树重要度分析方法及应用[J]. 系统工程与电子技术, 2024, 46(3): 935-941. |
[2] | 齐小刚, 周雨桐, 刘立芳. 无人机集群对地作战任务可靠性评估[J]. 系统工程与电子技术, 2023, 45(9): 2971-2978. |
[3] | 张宏军, 黄百乔, 白天. 复杂工程体系适应性机制构建与评价方法[J]. 系统工程与电子技术, 2023, 45(8): 2325-2331. |
[4] | 曾颖, 李彦锋, 王弘毅, 钱华明, 黄洪钟. 联合MRGP和PSO的工业机器人驱动器可靠性分析[J]. 系统工程与电子技术, 2023, 45(8): 2643-2650. |
[5] | 刘文波, 姚翼荣, 张弓, 胡文. 超维计算概念、应用及研究进展[J]. 系统工程与电子技术, 2023, 45(7): 1938-1956. |
[6] | 王湖升, 陈伯孝, 叶倾知. 基于箔条干扰实测数据的对抗方法研究[J]. 系统工程与电子技术, 2023, 45(7): 2010-2021. |
[7] | 李翔宇, 黄洪钟, 熊晓燕. 考虑冲击与阶段备份的多阶段任务系统可靠性建模[J]. 系统工程与电子技术, 2023, 45(7): 2280-2286. |
[8] | 何燕秋, 王有元, 何俐萍. 基于最大信息熵的长寿命产品可靠度置信区间Bootstrap估计方法[J]. 系统工程与电子技术, 2023, 45(6): 1880-1892. |
[9] | 李犟, 吴和成, 朱晨. 基于半参数退化模型的长寿命产品可靠性评估[J]. 系统工程与电子技术, 2023, 45(6): 1893-1901. |
[10] | 李军亮, 祝华远, 王正, 王利明, 张鑫磊. 基于混合Gamma分布的机载产品可靠性建模[J]. 系统工程与电子技术, 2023, 45(2): 614-620. |
[11] | 冯伟, 龙以君, 全英汇, 邢孟道. 基于SMOTE和深度迁移卷积神经网络的多类不平衡遥感图像分类算法研究[J]. 系统工程与电子技术, 2023, 45(12): 3715-3725. |
[12] | 赵文文, 孟相如, 康巧燕, 阳勇. 一种域间效能优先的二阶段控制器均衡部署策略[J]. 系统工程与电子技术, 2023, 45(12): 4052-4063. |
[13] | 薛小锋, 徐光铎, 冯蕴雯, 刘佳奇, 高涛, 郭世玺, 张薇. 基于元件降额设计的温度步进强化试验剖面设计[J]. 系统工程与电子技术, 2023, 45(12): 4073-4083. |
[14] | 翟宏州, 张华, 吴琳娜, 卜鹤群, 龚凯翔. 基于协同平衡的可靠性冗余设计优化算法[J]. 系统工程与电子技术, 2023, 45(12): 4084-4089. |
[15] | 张点, 邢云燕, 蒋平. 基于可靠性增长的可靠性鉴定试验方案[J]. 系统工程与电子技术, 2023, 45(11): 3699-3705. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||