16 |
SHI Y , LU Z Z , ZHOU Y C , et al. A novel learning function based on Kriging for reliability analysis[J]. Reliability Engineering and System Safety, 2020, 198 (2): 106857.
|
17 |
ZHANG X B , LU Z Z , CHENG K . Reliability index function approximation based on adaptive double-loop Kriging for reliability-based design optimization[J]. Reliability Engineering and System Safety, 2021, 216 (2): 108020.
|
18 |
WANG J S , XU G J , LI Y L , et al. AKSE: a novel adaptive Kriging method combining sampling region scheme and error-based stopping criterion for structural reliability analysis[J]. Reliability Engineering and System Safety, 2022, 219, 108214.
doi: 10.1016/j.ress.2021.108214
|
19 |
ZUHAL L R , FAZA G A , PALAR P S , et al. On dimensionality reduction via partial least squares for Kriging-based reliability analysis with active learning[J]. Reliability Engineering and System Safety, 2021, 215 (4): 107848.
|
20 |
KASTHA D , BOSE B K . Investigation of fault modes of voltage-fed inverter system for induction motor drive[J]. IEEE Trans.on Industry Applications, 1994, 30 (4): 1028- 1038.
doi: 10.1109/28.297920
|
21 |
王弘毅. 多失效模式下工业机器人驱动器可靠性分析与优化[D]. 成都: 电子科技大学, 2020.
|
|
WANG H Y. Reliability analysis and optimization of industrial robot drivers with multiple failure modes[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
|
22 |
罗皓泽. 基于动态热敏电参数法的大容量IGBT模块结温在线提取原理和方法研究[D]. 杭州: 浙江大学, 2015.
|
|
LUO H Z. On-line junction temperature extraction for high power IGBT modules with dynamical temperture sensitive elecrical paramaters (DTSEPs)[D]. Hangzhou: Zhejiang University, 2015.
|
23 |
俞珊, 徐志望, 董纪清. 开关电源中电解电容寿命预测分析[J]. 电源学报, 2016, 14 (6): 7: 87- 92.
|
|
YU S , XU Z W , DONG J Q . Analysis of electrolytic capacitor life prediction in switching power supply[J]. Journal of Power Supply, 2016, 14 (6): 87- 92.
|
24 |
ABUELNAGA A , NARIMANI M , BAHMAN A S . A review on IGBT module failure modes and lifetime testing[J]. IEEE Access, 2021, 9, 9643- 9663.
|
25 |
XIE D, GEIGER D, SHANGGUAN D, et al. Failure mechanism and mitigation of PCB pad cratering[C]//Proc. of the Electronic Components & Technology Conference, 2010.
|
26 |
ROGGEMAN B, BORGESEN P, JING L, et al. Assessment of PCB pad cratering resistance by joint level testing[C]//Proc. of the Electronic Components & Technology Conference, 2008.
|
27 |
ARNALDO I, KRAWIEC K, O"REILLY U M. Multiple regression genetic programming[C]//Proc. of the Conference on Genetic & Evolutionary Computation, 2014: 879-886.
|
28 |
ARENDT P D , APLEY D W , CHEN W , et al. Improving identifiability in model calibration using multiple responses[J]. Journal of Mechanical Design, 2012, 134 (10): 100909.
|
29 |
KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proc. of the International Conference on Swarm Intelligence, 1995: 33-57.
|
30 |
郭来小. IGBT基于故障物理的失效分析及电子器件加速寿命模型的研究[D]. 成都: 电子科技大学, 2018.
|
|
GUO L X. Failure analysis of IGBT based on physics of failure and study on accelerated life models of electronic devices[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
|
1 |
钱华明. 工业机器人关键部件的时变可靠性分析及优化方法研究[D]. 成都: 电子科技大学, 2021.
|
|
QIAN H M. Research on time-variant reliability analysis and optimization method for key components of industrial robot[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
|
2 |
CHIEN M C , HUANG A C . Adaptive control for flexible-joint electrically driven robot with time-varying uncertainties[J]. IEEE Trans.on Industrial Electronic, 2007, 54 (2): 1032- 1038.
doi: 10.1109/TIE.2007.893054
|
3 |
HOSODA K , SAKAGUCHI Y , TAKAYAMA H , et al. Pneumatic-driven jumping robot with anthropomorphic muscular skeleton structure[J]. Autonomous Robots, 2010, 28 (3): 307- 316.
doi: 10.1007/s10514-009-9171-6
|
4 |
PEIRCE A P , SIEBRITS E . A dual mesh multigrid preconditioner for the efficient solution of hydraulically driven fracture problems[J]. International Journal for Numerical Methods in Engineering, 2005, 63 (13): 1797- 1823.
doi: 10.1002/nme.1330
|
5 |
QIAN H M , LI Y F , HUANG H Z . Time-variant reliability analysis for industrial robot RV reducer under multiple failure modes using Kriging model[J]. Reliability Engineering and System Safety, 2020, 199 (4): 106936.
|
6 |
BAI B , XIE C X , LIU X D , et al. Application of integrated factor evaluation-analytic hierarchy process-T-S fuzzy fault tree analysis in reliability allocation of industrial robot systems[J]. Applied Soft Computing, 2022, 115, 108248.
doi: 10.1016/j.asoc.2021.108248
|
7 |
BICHON B J , ELDRED M S , SWILER L P , et al. Efficient global reliability analysis for nonlinear implicit performance functions[J]. AIAA Journal, 2008, 46 (10): 2459- 2468.
doi: 10.2514/1.34321
|
8 |
ECHARD B , GAYTON N , LEMAIRE M . AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation[J]. Structural Safety, 2011, 33 (2): 145- 154.
doi: 10.1016/j.strusafe.2011.01.002
|
9 |
ECHARD B , GAYTON N , LEMAIRE M , et al. A combined importance sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models[J]. Reliability Engineering & System Safety, 2013, 111, 232- 240.
|
10 |
HUANG X X , CHEN J Q , ZHU H P . Assessing small failure probabilities by AK-SS: an active learning method combining Kriging and subset simulation[J]. Structural Safety, 2016, 59, 86- 95.
doi: 10.1016/j.strusafe.2015.12.003
|
11 |
FAURIAT W , GAYTON N . AK-SYS: an adaptation of the AK-MCS method for system reliability[J]. Reliability Engineering & System Safety, 2014, 123, 137- 144.
|
12 |
XIAO N C , ZHAN H Y , YUAN K . A new reliability method for small failure probability problems by combining the adaptive importance sampling and surrogate models[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 372, 113336.
doi: 10.1016/j.cma.2020.113336
|
13 |
YUAN K , XIAO N C , WANG Z , et al. System reliability analysis by combining structure function and active learning Kriging model[J]. Reliability Engineering & System Safety, 2020, 195, 106734.
|
14 |
WANG Z , SHAFIEEZADEH A . REAK: reliability analysis through error rate-based adaptive Kriging[J]. Reliability Engineering & System Safety, 2019, 182, 33- 45.
|
15 |
ZHANG X , WANG L , SØRENSEN J D . REIF: a novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis[J]. Reliability Engineering & System Safety, 2019, 185, 440- 454.
|