1 |
赵运生, 胡骏, 吴铁鹰, 等. 大型民用飞机辅助动力装置性能仿真[J]. 航空动力学报, 2011, 26 (7): 1590- 1598.
|
|
ZHAO Y S , HU J , WU T Y , et al. Performance simulation of large civil aircraft auxiliary power unit[J]. Journal of Aerospace Power, 2011, 26 (7): 1590- 1598.
|
2 |
FLORES J J , GRAFF M , RODRIGUES H . Evaluative design of ARMA and ANN models for time series forecasting[J]. Renewable Energy, 2012, 44, 225- 230.
doi: 10.1016/j.renene.2012.01.084
|
3 |
王辉, 唐启东. 组合预测方法在APU状态监控中的应用[J]. 航空维修与工程, 2013, (6): 47- 49.
doi: 10.3969/j.issn.1672-0989.2013.06.022
|
|
WANG H , TANG Q D . Application for combination prediction method in apu condition monitoring[J]. Aviation Maintenance & Engineering, 2013, (6): 47- 49.
doi: 10.3969/j.issn.1672-0989.2013.06.022
|
4 |
董平. APU系统的状态监测与维修决策研究[D].南京:南京航空航天大学, 2018.
|
|
DONG P. Research on condition monitoring and maintenance decision of APU system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
|
5 |
宋云雪, 彭朋, 史永胜. 民用发动机状态混沌预测算法[J]. 航空动力学报, 2011, 26 (3): 675- 679.
|
|
SONG Y X , PENG P , SHI Y S . Chaos arithmetic for civil aeroengine forecasting[J]. Journal of Aerospace Power, 2011, 26 (3): 675- 679.
|
6 |
杜维仲, 王硕. 基于LSTM的辅助动力装置系统辨识与仿真[J]. 计算机测量与控制, 2020, 28 (2): 157- 161.
|
|
DU W Z , WANG S . System identification and simulation of auxiliary power plant based on LSTM[J]. Computer Measurement & Control, 2020, 28 (2): 157- 161.
|
7 |
皮骏, 马圣, 张奇奇, 等. 基于改进果蝇算法优化的GRNN航空发动机排气温度预测模型[J]. 航空动力学报, 2019, 34 (1): 8- 17.
|
|
PI J , MA S , ZHANG Q Q , et al. Aero-engine exhaust gas temperature prediction model based on IFOA-GRNN[J]. Journal of Aerospace Power, 2019, 34 (1): 8- 17.
|
8 |
丁刚, 徐敏强, 侯立国. 基于过程神经网络的航空发动机排气温度预测[J]. 航空动力学报, 2009, 24 (5): 1035- 1039.
|
|
DING G , XU M Q , HOU L G . Prediction of aeroengine exhaust gas temperature using process neural network[J]. Journal of Aerospace Power, 2009, 24 (5): 1035- 1039.
|
9 |
YILMAZ I . Evaluation of the relationship between exhaust gas temperature and operational parameters in CFM56-7 Bengines[J]. Proceedings of the Institution of Mechanical Engineers, 2009, 223 (4): 433- 440.
|
10 |
陈庆贵, 李洪伟, 李明, 等. 基于径向基过程神经网络的航空发动机排气温度预测[J]. 兵器装备工程学报, 2019, 40 (6): 154- 157.
doi: 10.11809/bqzbgcxb2019.06.032
|
|
CHEN Q G , LI H W , LI M , et al. Prediction of aeroengine exhaust gas temperature based on RBF neural networks[J]. Journal of Ordnance Equipment Engineering, 2019, 40 (6): 154- 157.
doi: 10.11809/bqzbgcxb2019.06.032
|
11 |
张一震, 钟诗胜, 付旭云, 等. 基于动态集成算法的航空发动机气路参数预测[J]. 航空动力学报, 2018, 33 (9): 2285- 2295.
|
|
ZHANG Y Z , ZHONG S S , FU X Y , et al. Aeroengine gas path parameter prediction based on dynamic ensemble algorithm[J]. Journal of Aerospace Power, 2018, 33 (9): 2285- 2295.
|
12 |
刘小鱼.基于数据驱动的航空发动机气路参数预测研究[D].大连:大连理工大学, 2019.
|
|
LIU X Y. Data driven prediction of the performance of aero-engine gas path[D]. Dalian: Dalian University of Technology, 2019.
|
13 |
唐敏杰. 基于状态维修的APU起动机监控模型的建模与实现[J]. 航空维修与工程, 2014, (3): 73- 75.
doi: 10.3969/j.issn.1672-0989.2014.03.043
|
|
TANG M J . Modeling and implementation of the APU starter monitoring model under CBM strategy[J]. Aviation Maintenance & Engineering, 2014, (3): 73- 75.
doi: 10.3969/j.issn.1672-0989.2014.03.043
|
14 |
KUMAR A, SRIVASTAVA A, GOEL N, et al. Exhaust gas temperature data prediction by autoregressive models[C]//Proc.of the IEEE 28th Canadian Conference on Electrical and Computer Engineering, 2015: 976-981.
|
15 |
戴邵武, 陈强强, 丁宇. 基于改进EMD的排气温度裕度预测[J]. 兵器装备工程学报, 2020, 41 (1): 157- 162.
|
|
DAI S W , CHEN Q Q , DING Y . Prediction of exhaust gas temperature margin based on improved EMD[J]. Journal of Ordnance Equipment Engineering, 2020, 41 (1): 157- 162.
|
16 |
李艳军, 张建, 曹愈远, 等. 基于模糊信息粒化和优化SVM的航空发动机性能趋势预测[J]. 航空动力学报, 2017, 32 (12): 3022- 3030.
|
|
LI Y J , ZHANG J , CAO Y Y , et al. Forecasting of aero-engine performance trend based on fuzzy information granulation and optimized SVM[J]. Journal of Aerospace Power, 2017, 32 (12): 3022- 3030.
|
17 |
NIETO P J G , GARCÍA-GONZALO E , LASHERAS F S , et al. Hybrid PSO-SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability[J]. Reliability Engineering & System Safety, 2015, 138 (6): 219- 231.
|
18 |
于广滨, 丁刚, 姚威, 等. 基于支持过程向量机的航空发动机排气温度预测[J]. 电机与控制学报, 2013, 17 (8): 30- 36.
doi: 10.3969/j.issn.1007-449X.2013.08.005
|
|
YU G B , DING G , YAO W , et al. Aeroengine exhaust gas temperature prediction using support process vector machine[J]. Electric Machines and Control, 2013, 17 (8): 30- 36.
doi: 10.3969/j.issn.1007-449X.2013.08.005
|
19 |
皮骏, 黄江博, 黄磊, 等. 基于改进QPSO-SVR的航空发动机排气温度预测[J]. 振动测试与诊断, 2019, 39 (2): 267- 272, 440.
|
|
PI J , HUANG J B , HUANG L , et al. Aeroengine exhaust gas temperature prediction based on IQPSO-SVR[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39 (2): 267- 272, 440.
|
20 |
ZHAN L W , LI C W . A hybrid PSO-SVM-based method for predicting the friction coefficient between aircraft tire and coating[J]. Measurement Science & Technology, 2017, 28 (2): 025004.
|
21 |
曹惠玲, 王冉. 基于滑动时窗策略自适应优化支持向量机的航空发动机性能参数在线预测[J]. 推进技术, 2020, 41 (8): 1887- 1894.
|
|
CAO H L , WANG R . Adaptively optimized support vector machine online prediction of aeroengine performance parameters based on sliding time window strategy[J]. Journal of Propulsion Technology, 2020, 41 (8): 1887- 1894.
|
22 |
蔡坤烨, 蔡景, 周迪, 等. 基于SVM方法的APU故障预测方法[J]. 南京航空航天大学学报, 2019, 51 (4): 466- 473.
|
|
CAI K Y , CAI J , ZHOU D , et al. APU fault prediction based on SVM method[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51 (4): 466- 473.
|
23 |
ZHANG Y , VISSER C C D , CHU Q P . Aircraft damage identification and classification for database-driven online flight-envelope prediction[J]. Journal of Guidance, Control, and Dynamics, 2018, 41 (2): 449- 460.
doi: 10.2514/1.G002866
|
24 |
CORTES C , VAPNIK V . Support-vector networks[J]. Machine Learning, 1995, 20 (3): 273- 297.
|
25 |
BURGES C J C . A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2 (2): 121- 167.
doi: 10.1023/A:1009715923555
|
26 |
ABOUHAWWASH M , SEADA H , DEB K . Towards faster convergence of evolutionary multi-criterion optimization algorithms using Karush Kuhn Tucker optimality based local search[J]. Computers and Operations Research, 2017, 79 (C): 331- 346.
|
27 |
SMITS G F, JORDAAN E M. Improved SVM regression using mixtures of kernels[C]//Proc.of the International Joint Conference on Neural Networks, 2002: 2785-2790.
|
28 |
魏瑾瑞. 对支持向量机混合核函数方法的再评估[J]. 统计研究, 2015, 32 (2): 90- 96.
|
|
WEI J R . A reevaluation of mixed kernel function for support vector machine[J]. Statistical Research, 2015, 32 (2): 92- 98.
|
29 |
KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proc.of the Intenational Conference on Neural Networks, 2011: 1942-1948.
|
30 |
SHI Y H, EBERHART R C. A modified particle swarm optimizer[C]//Proc.of the IEEE World Congress on Computational Intelligence, 1998: 69-73.
|
31 |
HOLLAND J . Genetic algorithms[J]. Scientific American, 1992, 267 (1): 66- 72.
doi: 10.1038/scientificamerican0792-66
|