系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (11): 3338-3345.doi: 10.12305/j.issn.1001-506X.2022.11.07

• 电子技术 • 上一篇    下一篇

基于多特征信息融合的海面微弱目标检测

薛春岭1,*, 曹菲1, 孙庆2, 秦建强1, 冯晓伟1   

  1. 1. 火箭军工程大学核工程学院, 陕西 西安 710025
    2. 宝鸡文理学院数学与信息科学学院, 陕西 宝鸡 721013
  • 收稿日期:2021-07-21 出版日期:2022-10-26 发布日期:2022-10-29
  • 通讯作者: 薛春岭
  • 作者简介:薛春岭 (1979—), 男, 工程师, 博士研究生, 主要研究方向为雷达信号处理、微弱目标检测|曹菲 (1970—), 女, 教授, 博士, 主要研究方向为信号处理、目标检测|孙庆 (1980—), 女, 讲师, 博士, 主要研究方向为计算数学、模式识别|秦建强 (1986—), 男, 讲师, 博士, 主要研究方向为海杂波仿真、信号处理|冯晓伟 (1986—), 男, 讲师, 博士, 主要研究方向为目标检测算法、海杂波抑制
  • 基金资助:
    国家自然科学基金(61903375);陕西省自然科学基金(2018JQ1046)

Sea-surface weak target detection based on multi-feature information fusion

Chunling XUE1,*, Fei CAO1, Qing SUN2, Jianqiang QIN1, Xiaowei FENG1   

  1. 1. Nuclear Engineering College, Rocket Force University of Engineering, Xi'an 710025, China
    2. School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, China
  • Received:2021-07-21 Online:2022-10-26 Published:2022-10-29
  • Contact: Chunling XUE

摘要:

为改善海杂波背景下雷达检测微弱目标的性能, 提出一种基于多特征信息融合的目标检测方法。首先, 在分析时域回波信号的基础上, 给出脉冲幅值离差比的概念, 并用其表征离散回波信号的尖锐度。其次, 结合回波信号的频率峰均比和局部分形度两种特征量, 构建多特征信息融合张量。然后, 采用交叉验证法训练支持向量机(support vectors machine, SVM)分类器, 并依据分类器进行目标检测。最后, 通过对实测海杂波数据的一系列实验分析, 优选了所提方案的参数。进一步与已有传统方法对比, 结果显示所提方法具有更好的鲁棒性。

关键词: 目标检测, 海杂波, 信息融合, 支持向量机

Abstract:

To improve the performance of radar weak target detection in sea clutter, a target detection method based on multi-feature information fusion is proposed. Firstly, on the basis of the analysis of time-domain returned signal, the pulse and amplitude deviation rate is defined to characterize the sharpness of discrete returned signal. Secondly, the multi-feature information fusion tensor is constructed by combining the frequency peak to average ratio and local grade of fractality of the returned signal. Thirdly, the support vectors machine (SVM) classifier is trained by cross validation, and the target is detected according to the classifier. Finally, by a series of experimental analysis of the measured sea clutter data, the parameters of the proposed scheme are optimized. Furthermore, the results show that the proposed method has better robustness compared with the existing traditional methods.

Key words: target detection, sea clutter, information fusion, support vector machine (SVM)

中图分类号: