系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (2): 521-529.doi: 10.12305/j.issn.1001-506X.2023.02.24

• 制导、导航与控制 • 上一篇    

基于改进粒子群优化极限学习机的弹丸参数辨识

夏悠然1, 管军1,2,*, 易文俊1   

  1. 1. 南京理工大学瞬态物理国家重点实验室, 江苏 南京 210094
    2. 江苏科技大学电子信息学院, 江苏 镇江 212100
  • 收稿日期:2021-10-28 出版日期:2023-01-13 发布日期:2023-02-04
  • 通讯作者: 管军
  • 作者简介:夏悠然 (1997—), 男, 博士研究生, 主要研究方向为弹箭飞行控制
    管军 (1987—), 男, 讲师, 博士, 主要研究方向为弹箭飞行控制
    易文俊 (1970—), 男, 教授, 博士, 主要研究方向为弹箭飞行控制

Projectile parameter identification: extreme learning machine optimized by improved particle swarm

Youran XIA1, Jun GUAN1,2,*, Wenjun YI1   

  1. 1. National Key Lab of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China
    2. School of Electronic and Information, Jiangsu University of Science and Technology, Zhenjiang 212100, China
  • Received:2021-10-28 Online:2023-01-13 Published:2023-02-04
  • Contact: Jun GUAN

摘要:

针对随机产生输入权重和隐含层神经元阈值导致利用极限学习机辨识弹丸气动参数时会出现辨识结果发散问题, 本文将粒子群算法与极限学习机结合, 并且引入自适应更新策略以及粒子变异策略, 提出了一种自适应变异粒子群优化极限学习机算法。该算法利用自适应变异粒子群算法寻优产生极限学习机的输入权重和隐含层阈值, 有效改善算法性能。仿真实验表明,利用自适应变异粒子群优化极限学习机算法辨识弹丸气动参数, 精度高、收敛速度快, 能够充分满足实际工程需要。

关键词: 弹丸, 气动参数辨识, 极限学习机, 粒子群优化算法, 自适应更新策略, 粒子变异策略

Abstract:

In view of the identification results diverge when using extreme learning machine to identify the aerodynamic parameters of the projectile, due to the randomly generated input weights and hidden layer neuron thresholds, an adaptive mutation particle swarm optimization extreme learning machine algorithm is proposed. The paper introduces the adaptive update strategy and particle mutation strategy into particle swarm optimization algorithm and couples it with extreme learning machine. The proposed algorithm optimizes the input weights and hidden layer thresholds of extreme learning machine through adaptive mutation particle swarm optimization algorithm, the adaptive update strategy and particle mutation strategy in algorithm effectively improve the performance of the algorithm. Simulation experiments show that the use of adaptive mutation particle swarm optimization extreme learning machine exceedingly improve identification accuracy and convergence speed, which is practical in engineer application.

Key words: projectile, aerodynamic parameter identification, extreme learning machine, particle swarm optimization algorithm, adaptive update strategy, particle mutation strategy

中图分类号: