系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (3): 883-892.doi: 10.12305/j.issn.1001-506X.2025.03.20
• 系统工程 • 上一篇
潘晨辉1,*, 鲜勇1, 马培洋1, 倪晚成2, 赵晓楠2, 李少朋1,3
收稿日期:
2024-02-18
出版日期:
2025-03-28
发布日期:
2025-04-18
通讯作者:
潘晨辉
作者简介:
潘晨辉 (1994—), 女, 博士研究生, 主要研究方向为智能任务规划与作战仿真基金资助:
Chenhui PAN1,*, Yong XIAN1, Peiyang MA1, Wancheng NI2, Xiaonan ZHAO2, Shaopeng LI1,3
Received:
2024-02-18
Online:
2025-03-28
Published:
2025-04-18
Contact:
Chenhui PAN
摘要:
为满足态势认知智能化需求, 提出一种面向兵棋推演战场态势认知的机器学习数据集规范化构建方法。以陆军战术兵棋推演为研究对象, 基于特征工程分析其战场态势关键要素, 提出一种分层栅格化的战场态势特征表达模型。采用等间隔时间关联模式对兵棋推演过程数据进行滑动切片、映射变换, 解决兵棋数据结构不统一、特征标签不均衡、数据变换保真困难等问题, 实现样本的自动收集与存储。构建并公开包含26万个样本的数据集兵棋推演态势认知机器学习数据集, 实验表明采用所提方法构建的数据集主观色彩少, 数据保真效果好, 数据集采集过程自动且高效, 数据集一致性好。
中图分类号:
潘晨辉, 鲜勇, 马培洋, 倪晚成, 赵晓楠, 李少朋. 兵棋推演态势认知的态势数学表达方法[J]. 系统工程与电子技术, 2025, 47(3): 883-892.
Chenhui PAN, Yong XIAN, Peiyang MA, Wancheng NI, Xiaonan ZHAO, Shaopeng LI. Situation mathematical expression method of situational awareness in wargame[J]. Systems Engineering and Electronics, 2025, 47(3): 883-892.
1 | 汪跃, 唐志军, 车德朝, 等. 战场态势一张图技术综述[J]. 指挥信息系统与技术, 2020, 11 (1): 12- 17. |
WANG Y , TANG Z J , CHE D C , et al. Technical review of battlefield situation one map[J]. Command Information Systems and Technology, 2020, 11 (1): 12- 17. | |
2 |
CHEN L , LIANG X X , FENG Y H , et al. Online intention re-cognition with incomplete information based on a weighted contrastive predictive coding model in wargame[J]. IEEE Trans.on Neural Networks and Learning Systems, 2023, 34 (10): 7515- 7528.
doi: 10.1109/TNNLS.2022.3144171 |
3 | 李昌玺, 王灿, 徐颖, 等. 联合作战条件下战场态势一张图功能模型构建[J]. 现代雷达, 2022, 44 (2): 35- 40. |
LI C X , WANG C , XU Y , et al. Construction of a functional model for battlefield situation under joint operations conditions[J]. Modern Radar, 2022, 44 (2): 35- 40. | |
4 | FAN Y, WANG J R. Characteristics of battlefield situation using 3D volume rendering technology[C]//Proc. of the International Conference on Electronic Information Engineering and Computer Science, 2023. |
5 | JARVIS D A. A methodology for analyzing complex military command and control (C2) networks[C]//Proc. of the 10th International Command and Control Research and Technology Symposium, 2005. |
6 | DEKKER A H. Analyzing C2 structures and self-synchronization with simple computational models[C]//Proc. of the 16th International Command and Control Research and Technology Symposium, 2011. |
7 |
杜正军, 张国辉, 李庆震, 等. 作战体系效能分析及关键目标选择模型研究[J]. 火力与指挥控制, 2022, 47 (1): 125- 129.
doi: 10.3969/j.issn.1002-0640.2022.01.021 |
DU Z J , ZHANG G H , LI Q Z , et al. Analysis of combat system efficiency and research on key target selection model[J]. Fire and Command Control, 2022, 47 (1): 125- 129.
doi: 10.3969/j.issn.1002-0640.2022.01.021 |
|
8 | SCHECHTER B , SCHNEIDER J , SHAFFER R . Wargaming as a methodology: the international crisis wargame and experimental wargaming[J]. Simulation & Gaming, 2021, 52 (3): 513- 526. |
9 | MEI X, ZHANG D L, LIAO Q J, et al. Research on the platform system of military chess computer game[C]//Proc. of the 25th China Control and Decision Conference, 2013: 1754-1757. |
10 |
石崇林, 张茂军, 吴琳, 等. 基于密度的计算机兵棋推演数据快速聚类算法[J]. 系统工程与电子技术, 2011, 33 (11): 2428- 2433.
doi: 10.3969/j.issn.1001-506X.2011.11.16 |
SHI C L , ZHANG M J , WU L , et al. Quick clustering algorithm for wargaming data based on density[J]. Systems Engineering and Electronics, 2011, 33 (11): 2428- 2433.
doi: 10.3969/j.issn.1001-506X.2011.11.16 |
|
11 | 韩志军, 李锰, 孙少斌. 大型仿真推演系统数据质量评估方法[J]. 火力与指挥控制, 2016, 41 (1): 77- 80. |
HAN Z J , LI M , SUN S B . Data quality evaluating method of large-scale simulation rehearsal system[J]. Fire Control & Command Control, 2016, 41 (1): 77- 80. | |
12 |
胡艮胜, 张倩倩, 马朝忠. 兵棋推演系统中的异常数据挖掘方法[J]. 信息工程大学学报, 2020, 21 (3): 373- 377.
doi: 10.3969/j.issn.1671-0673.2020.03.019 |
HU G S , ZHANG Q Q , MA C Z . Outlier data mining of the war game system[J]. Journal of Information Engineering University, 2020, 21 (3): 373- 377.
doi: 10.3969/j.issn.1671-0673.2020.03.019 |
|
13 | 刘海洋, 胡晓峰, 刘戎翔, 等. 基于时序超网的作战体系效能指标动态测量方法[J]. 火力与指挥控制, 2020, 45 (4): 47- 52. |
LIU H Y , HU X F , LIU R X , et al. Dynamic measurement method of operation SoS effectiveness index based on sequential super-network[J]. Fire Control & Command Control, 2020, 45 (4): 47- 52. | |
14 | 刘长亮, 鲍传美, 包化, 等. 可拓数据挖掘在高性能兵棋推演系统中的应用[J]. 指挥信息系统与技术, 2018, 9 (1): 62- 67. |
LIU C L , BAO C M , BAO H , et al. Application of extensible data mining in high performance wargaming system[J]. Command Information System and Technology, 2018, 9 (1): 62- 67. | |
15 | 邢思远, 倪晚成, 张海东, 等. 基于兵棋复盘数据的武器效用挖掘[J]. 指挥与控制学报, 2020, 6 (2): 132- 140. |
XING S Y , NI W C , ZHANG H D , et al. Mining of weapon utility based on the replay data of wargame[J]. Journal of Command and Control, 2020, 6 (2): 132- 140. | |
16 | 秦园丽, 张训立, 陶海军, 等. 基于贝叶斯理论的兵棋演习数据分析方法研究[J]. 火箭军工程大学学报(自然科学版), 2019 (3): 34- 38. |
QIN Y L , ZHANG X L , TAO H J , et al. Bayesian theory-based analysis of wargame maneuver data[J]. Journal of Rocket Force University of Engineering (Natural Science Edition), 2019 (3): 34- 38. | |
17 | CHEN L , KOU Y X , LI Z W , et al. Empirical research on complex networks modeling of combat SoS based on data from real wargame, Part Ⅰ: Statistical characteristics[J]. Physica A statistical Mechanics and its Applications, 2018, 490, 754- 773. |
18 | LU T L , CHEN K , ZHANG Y , et al. Research on dynamic evolution model and method of communication network based on real war game[J]. Entropy, 2021, 23 (4): 487. |
19 | BROWN N , SANDHOLM T . Superhuman AI for heads-up no-limit poker: Libratus beats top professionals[J]. Science, 2018, 359 (6374): 418- 424. |
20 | VINYALS O , BABUSCHKIN I , CZARNECKI W M , et al. Grandmaster level in StarCraft Ⅱ using multi-agent reinforcement learning[J]. Nature, 2019, 575 (14): 350- 354. |
21 | SUN Y X , YUAN B , ZHANG Y L , et al. Research on action strategies and simulations of DRL and MCTS-based intelligent round game[J]. International Journal of Control, Automation and Systems, 2021, 19, 2984- 2998. |
22 | YE D H , CHEN G B , ZHAO P L , et al. Supervised learning achieves human-level performance in MOBA games: a case study of honor of kings[J]. IEEE Trans.on Neural Networks and Learning Systems, 2022, 33 (3): 908- 918. |
23 | LIU M , ZHANG H J , HAO W N , et al. Introduction of a new dataset and method for location predicting based on deep learning in wargame[J]. Journal of Intelligent and Fuzzy Systems, 2021, 40 (5): 9259- 9275. |
24 | SILVER D , HUANG A , MADDISON C J , et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529 (7587): 484- 489. |
25 | SILVER D , SCHRITTWIESER J , SIMONYAN K , et al. Mastering the game of go without human knowledge[J]. Nature, 2017, 550 (7676): 354- 359. |
26 | 石崇林. 基于数据挖掘的兵棋推演数据分析方法研究[D]. 长沙: 国防科学技术大学, 2012. |
SHI C L. Research on data analysis method for wargame based on data mining[D]. Changsha: National University of Defense Science and Technology, 2012. | |
27 | LEE C E , BAEK J , SON J , et al. Deep AI military staff: cooperative battlefield situation awareness for commander's decision making[J]. The Journal of Supercomputing, 2023, 79 (6): 6040- 6069. |
28 |
王强, 高云翔, 杭爽, 等. 基于综合集成法的军事战略能力评估方法[J]. 系统工程与电子技术, 2023, 45 (8): 2312- 2317.
doi: 10.12305/j.issn.1001-506X.2023.08.03 |
WANG Q , GAO Y X , HANG S , et al. A military strategic capability evaluation method based on comprehensive integration method[J]. Systems Engineering and Electronics, 2023, 45 (8): 2312- 2317.
doi: 10.12305/j.issn.1001-506X.2023.08.03 |
|
29 | ZHAO Y M, GUO P, LIU C J, et al. Design and implementation of battlefield situation visualization system based on OSG[C]// Proc. of the IEEE 8th International Conference on Computer and Communications, 2022: 2286-2291. |
30 | YU L, LIU H. Feature selection for high-dimensional data: a fast correlation-based filter solution[C]//Proc. of the 20th International Conference, 2003. |
31 | DIPTI T , BHOYAR K K . Feature selection techniques for machine learning: a survey of more than two decades of research[J]. Knowledge and Information Systems, 2024, 66 (3): 1575- 1637. |
32 | CHANDRASHEKAR G , SAHIN F . A survey on feature selection methods[J]. Computers & Electrical Engineering, 2014, 40 (1): 16- 28. |
33 | 尹奇跃, 赵美静, 倪晚成, 等. 兵棋推演的智能决策技术与挑战[J]. 自动化学报, 2023, 49 (5): 913- 928. |
YIN Q Y , ZHAO M J , NI W C , et al. Intelligent decision-making technology and challenges in wargame[J]. Journal of Automation, 2023, 49 (5): 913- 928. | |
34 | KENDRICK K . Dangerous changes: when military innovation harms combat effectiveness[J]. International Security, 2022, 47 (2): 48- 87. |
[1] | 彭莉莎, 孙宇祥, 薛宇凡, 周献中. 融合三支多属性决策与SAC的兵棋推演智能决策技术[J]. 系统工程与电子技术, 2024, 46(7): 2310-2322. |
[2] | 王希, 任惠, 王威, 张嘉怡, 赵洪山. URLLC场景下信道可靠连通度预测[J]. 系统工程与电子技术, 2024, 46(5): 1810-1819. |
[3] | 季然, 肖茂森, 李硕, 刘宇, 罗湛仪, 程嘉维. 基于机器学习的MRTD客观测试方法研究[J]. 系统工程与电子技术, 2024, 46(10): 3265-3270. |
[4] | 刘文波, 姚翼荣, 张弓, 胡文. 超维计算概念、应用及研究进展[J]. 系统工程与电子技术, 2023, 45(7): 1938-1956. |
[5] | 王湖升, 陈伯孝, 叶倾知. 基于箔条干扰实测数据的对抗方法研究[J]. 系统工程与电子技术, 2023, 45(7): 2010-2021. |
[6] | 冯伟, 龙以君, 全英汇, 邢孟道. 基于SMOTE和深度迁移卷积神经网络的多类不平衡遥感图像分类算法研究[J]. 系统工程与电子技术, 2023, 45(12): 3715-3725. |
[7] | 李文华, 汪立新, 沈强, 李灿, 吴宗收. 基于鲁棒EKF的MEMS-INS/GNSS/VO组合导航方法[J]. 系统工程与电子技术, 2022, 44(6): 1994-2000. |
[8] | 王春政, 胡明华, 杨磊, 赵征. 空中交通延误预测研究综述[J]. 系统工程与电子技术, 2022, 44(3): 863-874. |
[9] | 张心宇, 刘源, 宋佳凝. 基于LSTM神经网络的短期轨道预报[J]. 系统工程与电子技术, 2022, 44(3): 939-947. |
[10] | 王海滨, 关欣, 衣晓. 基于区间数聚类的目标分群算法[J]. 系统工程与电子技术, 2022, 44(2): 577-583. |
[11] | 唐玺博, 张立民, 钟兆根. 基于ADASYN与改进残差网络的入侵流量检测识别[J]. 系统工程与电子技术, 2022, 44(12): 3850-3862. |
[12] | 张寒, 黄炎焱, 耿泽, 张振. 营区突发事件应急保障方案仿真推演评估方法[J]. 系统工程与电子技术, 2022, 44(11): 3433-3442. |
[13] | 赵凡, 金虎. 基于GAN的通信干扰波形生成技术[J]. 系统工程与电子技术, 2021, 43(4): 1080-1088. |
[14] | 李琛, 黄炎焱, 张永亮, 陈天德. Actor-Critic框架下的多智能体决策方法及其在兵棋上的应用[J]. 系统工程与电子技术, 2021, 43(3): 755-762. |
[15] | 宋波, 叶伟, 孟祥辉. 基于多智能体强化学习的动态频谱分配方法综述[J]. 系统工程与电子技术, 2021, 43(11): 3338-3351. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||