| 1 |
陈峥, 毕晓君. 基于轻量级神经网络的单幅图像去雨滴模型[J]. 哈尔滨工程大学学报, 2023, 44 (2): 292- 299.
|
|
CHEN Z, BI X J. A single image raindrop removal model based on lightweight neural network[J]. Journal of Harbin Engineering University, 2023, 44 (2): 292- 299.
|
| 2 |
WANG J F, CHEN Y, DONG Z K, et al. Improved YOLOv5 network for real-time multi-scale traffic sign detection[J]. Neural Computing and Applications, 2023, 35 (10): 7853- 7865.
doi: 10.1007/s00521-022-08077-5
|
| 3 |
RUAN W J, CHEN J, WU Y, et al. Multi-correlation filters with triangle-structure constraints for object tracking[J]. IEEE Trans. on Multimedia, 2018, 21 (5): 1122- 1134.
|
| 4 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 40 (4): 834- 848.
|
| 5 |
LUO Y, XU Y, JI H. Removing rain from a single image via discriminative sparse coding[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 3397–3405.
|
| 6 |
YOU S, TAN R, KAWAKAMI R, et al. Adherent raindrop modeling, detection and removal in video[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2016, 38 (9): 1721- 1733.
doi: 10.1109/TPAMI.2015.2491937
|
| 7 |
EIGEN D, KRISHNAN D, FERGUS R. Restoring an image taken through a window covered with dirt or rain[C]//Proc. of the IEEE International Conference on Computer Vision, 2013: 633–640.
|
| 8 |
QIAN R, TAN R T, YANG W H, et al. Attentive generative adversarial network for raindrop removal from a single image[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 2482–2491.
|
| 9 |
VALANARASU J M J, YASARLA R, PATEL V M. Transweather: transformer-based restoration of images degraded by adverse weather conditions[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 2353–2363.
|
| 10 |
TANG H, XU D, SEBE N, et al. Attention-guided generative adversarial networks for unsupervised image-to-image translation[C]//Proc. of the International Joint Conference on Neural Networks, 2019.
|
| 11 |
包玉刚, 贾皓翔, 赵旦峰. 基于判别性特征增强网络的单幅图像去雨模型[EB/OL]. [2025-03-18]. http://kns.cnki.net/kcms/detail/23.1390.U.20241105.1516.004.html.
|
|
BAO Y G, JIA H X, ZHAO D F. A single image de-raining model based on discriminant feature enhancement network[EB/OL]. [2025-03-18] http://kns.cnki.net/kcms/detail/23.1390.U.20241105.1516.004.html.
|
| 12 |
ALLETTO S, CARLIN C, RIGAZIO L, et al. Adherent raindrop removal with self-supervised attention maps and spatio-temporal generative adversarial networks[C]//Proc. of the IEEE/CVF International Conference on Computer Vision Workshops, 2019: 2329–2338.
|
| 13 |
LIU X, SUGANUMA M, SUN Z, et al. Dual residual networks leveraging the potential of paired operations for image restoration[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7007–7016.
|
| 14 |
LI R T, TAN R T, CHEONG L F. All in one bad weather removal using architectural search[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 3172–3182.
|
| 15 |
ZHANG K H, LI D X, LUO W H, et al. Dual attention-in-attention model for joint rain streak and raindrop removal[J]. IEEE Trans. on Image Processing, 2021, 30, 7608- 7619.
doi: 10.1109/TIP.2021.3108019
|
| 16 |
GUO Y, XIAO X Y, WANG X X, et al. A two-stage real image deraining method for gt-rain challenge cvpr 2023 workshop UG2+ Track 3[EB/OL]. [2024-08-05]. https: //arxiv.org/abs/2305.07979.
|
| 17 |
CAI L, FU Y L, HUO W L, et al. Multiscale attentive image de-raining networks via neural architecture search[J]. IEEE Trans. on Circuits and Systems for Video Technology, 2023, 33 (2): 618- 633.
doi: 10.1109/TCSVT.2022.3207516
|
| 18 |
阳金霖, 李朝锋. 融合快速傅里叶卷积的域变换图像去雨滴方法[J]. 计算机工程, 2024, 50 (9): 296- 303.
doi: 10.19678/j.issn.1000-3428.0068351
|
|
YANG J L, LI C F. Domain transform image raindrop removal method by integrating fast Fourier convolution[J]. Computer Engineering, 2024, 50 (9): 296- 303.
doi: 10.19678/j.issn.1000-3428.0068351
|
| 19 |
江炜. 基于机器视觉与深度学习的挡风玻璃雨滴检测方法研究[D]. 盐城: 盐城工学院, 2024.
|
|
JIANG W. Research on raindrop detection on windshields based on machine vision and deep learning[D]. Yancheng: Yancheng Institute of Technology, 2024.
|
| 20 |
文渊博, 高涛, 安毅生, 等. 基于视觉提示学习的天气退化图像恢复[EB/OL]. [2024-08-05]. https://link.cnki.net/urlid/11.1826.tp.20240627.0925.002.
|
|
WEN Y B, GAO T, AN Y S, et al. Weather degraded image restoration based on visual prompt learning[EB/OL]. [2024-08-05]. https://link.cnki.net/urlid/11.1826.tp.20240627.0925.002.
|
| 21 |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132–7141.
|
| 22 |
XIE G T, WANG J D, ZHANG T, et al. Interleaved structured sparse convolutional neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8847–8856.
|
| 23 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770–778.
|
| 24 |
HUA B S, TRAN M K, YEUNG S K. Pointwise convolutional neural networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 984–993.
|
| 25 |
TAN M, LE Q V. Mixconv: mixed depthwise convolutional kernels[EB/OL]. [2024-08-05].https://arxiv.org/abs/1907.09595.
|
| 26 |
HAN K, WANG Y H, TIAN Q, et al. Ghostnet: more features from cheap operations[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580–1589.
|
| 27 |
MA N, ZHANG X, ZHENG H T, et al. Shufflenet v2: practical guidelines for efficient CNN architecture design[C]//Proc. of the European Conference on Computer Vision, 2018: 116–131.
|
| 28 |
LI X, WU J L, LIN Z C, et al. Recurrent squeeze-and-excitation context aggregation net for single image deraining[C]//Proc. of the European Conference on Computer Vision, 2018: 254–269.
|
| 29 |
JIANG K, WANG Z Y, YI P, et al. Multi-scale progressive fusion network for single image deraining[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8346–8355.
|
| 30 |
WANG Z, BOIVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans. on Image Processing, 2004, 13 (4): 600- 612.
doi: 10.1109/TIP.2003.819861
|
| 31 |
HUYNH T Q, GHANBARI M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44 (13): 800- 801.
doi: 10.1049/el:20080522
|
| 32 |
PASZKE A, GROSS S, MASSA F, et al. Pytorch: an imperative style, high-performance deep learning library[C]// Proc. of the Conference on Neural Information Processing Systems, 2020.
|
| 33 |
KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. [2024-08-05].https://arxiv.org/abs/1412.6980.
|