系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (6): 1796-1805.doi: 10.12305/j.issn.1001-506X.2025.06.08

• 传感器与信号处理 • 上一篇    下一篇

噪声伪标签容忍的半监督SAR目标识别

张新征1,*, 闫梦可1, 朱晓林2   

  1. 1. 重庆大学微电子与通信工程学院, 重庆 401331
    2. 中国人民解放军某部军事代表局, 北京 100088
  • 收稿日期:2024-06-26 出版日期:2025-06-25 发布日期:2025-07-09
  • 通讯作者: 张新征
  • 作者简介:张新征 (1978—), 男, 副教授, 博士, 主要研究方向为合成孔径雷达图像解译、智能信息处理
    闫梦可 (2000—), 男, 硕士研究生, 主要研究方向为深度学习、合成孔径雷达目标识别
    朱晓林 (1978—), 男, 高级工程师, 硕士, 主要研究方向为信号与信息处理
  • 基金资助:
    国家自然科学基金(61301224);重庆市自然科学基金(cstc2021jcyj-msxmX0174)

Noise pseudo-label tolerant semi-supervised SAR target recognition

Xinzheng ZHANG1,*, Mengke YAN1, Xiaolin ZHU2   

  1. 1. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 401331, China
    2. A Military Representative Bureau of a Department of the Chinese People's Liberation Army, Beijing 100088, China
  • Received:2024-06-26 Online:2025-06-25 Published:2025-07-09
  • Contact: Xinzheng ZHANG

摘要:

针对标签训练样本稀缺时半监督合成孔径雷达(synthetic aperture radar, SAR)自动目标识别(automatic target recognition, ATR)中噪声伪标签导致识别精度受限的挑战, 提出一种噪声伪标签容忍的半监督SAR ATR方法。该方法包括两个阶段: 第一阶段通过残差网络(residual network, ResNet)和多分类器融合实现高可靠性伪标签的生成与选择, 从而扩充标签训练数据集; 第二阶段基于WideResNet骨干网络构建具有噪声伪标签容忍特性的鲁棒一致性学习网络, 设计噪声伪标签平滑机制和噪声伪标签容忍的分段损失函数, 实现高精度ATR。在运动和静止目标获取与识别(moving and stationary target acquisition and recognition, MSTAR)SAR数据集上开展实验。实验结果表明, 所提方法在10类目标且每类目标仅有5个标签训练样本的情况下, 能达到93.37%的平均识别准确率, 显著提升了目标识别性能和泛化能力。

关键词: 合成孔径雷达, 自动目标识别, 半监督, 深度学习, 伪标签

Abstract:

To address the challenge of limited recognition accuracy due to noise pseudo-labels in semi-supervised synthetic aperture radar (SAR) automatic target recognition (ATR) with scarce labeled training samples, a noise pseudo-label tolerant semi-supervised SAR ATR method is proposed. The proposed method includes two stages. In the first stage, high-reliability pseudo-labels are generated and selected by combining residual network (ResNet) and multi-classifier fusion, so as to enrich the labeled training dataset. In the second stage, a robust consistency learning network with noise pseudo-label tolerant characteristics is constructed based on WideResNet backbone to implement ATR with high accuracy, in which a noise pseudo-label smoothing mechanism is designed as well as a piecewise noise pseudo-label tolerant loss function. Experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR) SAR dataset. The experimental results demonstrate that the proposed method achieves an average recognition accuracy of 93.37% across 10-class targets with only five labeled training samples for each class, which significantly enhances recognition performance and generalization ability.

Key words: synthetic aperture radar (SAR), automatic target recognition (ATR), semi-supervised, deep learning (DL), pseudo-label

中图分类号: