系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (6): 1796-1805.doi: 10.12305/j.issn.1001-506X.2025.06.08
张新征1,*, 闫梦可1, 朱晓林2
收稿日期:
2024-06-26
出版日期:
2025-06-25
发布日期:
2025-07-09
通讯作者:
张新征
作者简介:
张新征 (1978—), 男, 副教授, 博士, 主要研究方向为合成孔径雷达图像解译、智能信息处理基金资助:
Xinzheng ZHANG1,*, Mengke YAN1, Xiaolin ZHU2
Received:
2024-06-26
Online:
2025-06-25
Published:
2025-07-09
Contact:
Xinzheng ZHANG
摘要:
针对标签训练样本稀缺时半监督合成孔径雷达(synthetic aperture radar, SAR)自动目标识别(automatic target recognition, ATR)中噪声伪标签导致识别精度受限的挑战, 提出一种噪声伪标签容忍的半监督SAR ATR方法。该方法包括两个阶段: 第一阶段通过残差网络(residual network, ResNet)和多分类器融合实现高可靠性伪标签的生成与选择, 从而扩充标签训练数据集; 第二阶段基于WideResNet骨干网络构建具有噪声伪标签容忍特性的鲁棒一致性学习网络, 设计噪声伪标签平滑机制和噪声伪标签容忍的分段损失函数, 实现高精度ATR。在运动和静止目标获取与识别(moving and stationary target acquisition and recognition, MSTAR)SAR数据集上开展实验。实验结果表明, 所提方法在10类目标且每类目标仅有5个标签训练样本的情况下, 能达到93.37%的平均识别准确率, 显著提升了目标识别性能和泛化能力。
中图分类号:
张新征, 闫梦可, 朱晓林. 噪声伪标签容忍的半监督SAR目标识别[J]. 系统工程与电子技术, 2025, 47(6): 1796-1805.
Xinzheng ZHANG, Mengke YAN, Xiaolin ZHU. Noise pseudo-label tolerant semi-supervised SAR target recognition[J]. Systems Engineering and Electronics, 2025, 47(6): 1796-1805.
1 |
MOREIRA A , PRATS-IRAOLA P , YOUNIS M , et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1 (1): 6- 43.
doi: 10.1109/MGRS.2013.2248301 |
2 | 徐丰, 王海鹏, 金亚秋. 深度学习在SAR目标识别与地物分类中的应用[J]. 雷达学报, 2017, 6 (2): 136- 148. |
XU F , WANG H P , JIN Y Q . Application of deep learning in SAR target recognition and terrain classification[J]. Journal of Radars, 2017, 6 (2): 136- 148. | |
3 |
RAN L , LIU Z , LI T , et al. Extension of map-drift algorithm for highly squinted SAR autofocus[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (9): 4032- 4044.
doi: 10.1109/JSTARS.2017.2702621 |
4 |
XIE Y Z , ZHU B C , YAN W , et al. On finite word length computing error of fixed-point SAR imaging processing[J]. Chinese Journal of Electronics, 2014, 23 (3): 645- 648.
doi: 10.23919/CJE.2014.10851225 |
5 | 杜兰, 王兆成, 王燕, 等. 复杂场景下单通道SAR目标检测及鉴别研究进展综述[J]. 雷达学报, 2020, 9 (1): 34- 54. |
DU L , WANG Z C , WANG Y , et al. A review of research progress on single-channel SAR target detection and identification in complex scenarios[J]. Journal of Radars, 2020, 9 (1): 34- 54. | |
6 |
胡利平, 董纯柱, 刘锦帆, 等. 基于SAR仿真图像的地面车辆非同源目标识别[J]. 系统工程与电子技术, 2021, 43 (12): 3518- 3525.
doi: 10.12305/j.issn.1001-506X.2021.12.13 |
HU L P , DONG C Z , LIU J F , et al. Heterogeneous target reco- gnition of ground vehicles based on SAR simulated images[J]. Systems Engineering and Electronics, 2021, 43 (12): 3518- 3525.
doi: 10.12305/j.issn.1001-506X.2021.12.13 |
|
7 | 罗汝, 赵凌君, 何奇山, 等. SAR图像飞机目标智能检测识别技术研究进展与展望[J]. 雷达学报, 2024, 13 (2): 307- 330. |
LUO R , ZHAO L J , HE Q S , et al. Research progress and prospects of intelligent detection and recognition technology for aircraft targets in SAR images[J]. Journal of Radars, 2024, 13 (2): 307- 330. | |
8 | NOVAK L M , OWIRKA G J , BROWER W S , et al. The automatic target-recognition system in SAIP[J]. Lincoln Laboratory Journal, 1997, 10 (2): 187- 202. |
9 |
张新征, 黄培康. 基于贝叶斯压缩感知的SAR目标识别[J]. 系统工程与电子技术, 2013, 35 (1): 40- 44.
doi: 10.3969/j.issn.1001-506X.2013.01.07 |
ZHANG X Z , HUANG P K . SAR target recognition based on Bayesian compressed sensing[J]. Systems Engineering and Electronics, 2013, 35 (1): 40- 44.
doi: 10.3969/j.issn.1001-506X.2013.01.07 |
|
10 |
ZHAO Q , PRINCIPE J C . Support vector machines for SAR automatic target recognition[J]. IEEE Trans.on Aerospace and Electronic Systems, 2001, 37 (2): 643- 654.
doi: 10.1109/7.937475 |
11 |
HUANG X , XU Q S , CAO D S , et al. Kernel k-nearest neighbor classifier based on decision tree ensemble for SAR modeling analysis[J]. Analytical Methods, 2014, 6 (17): 6621- 6627.
doi: 10.1039/C4AY00836G |
12 |
LOOSVELT L , PETERS J , SKRIVER H , et al. Impact of reducing polarimetric SAR input on the uncertainty of crop classifications based on the random forests algorithm[J]. IEEE Trans.on Geoscience and Remote Sensing, 2012, 50 (10): 4185- 4200.
doi: 10.1109/TGRS.2012.2189012 |
13 | HUAN R H, YANG R L. SAR target recognition based on MRF and Gabor wavelet feature extraction[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2008. |
14 | TAO M L , ZHOU F , LIU Y , et al. Tensorial independent component analysis-based feature extraction for polarimetric SAR data classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2014, 53 (5): 2481- 2495. |
15 | 文贡坚, 朱国强, 殷红成, 等. 基于三维电磁散射参数化模型的SAR目标识别方法[J]. 雷达学报, 2017, 6 (2): 115- 135. |
WEN G J , ZHU G Q , YIN H C , et al. SAR target recognition method based on 3D electromagnetic scattering parametric model[J]. Journal of Radars, 2017, 6 (2): 115- 135. | |
16 | 齐会娇, 王英华, 丁军, 等. 基于多信息字典学习及稀疏表示的SAR目标识别[J]. 系统工程与电子技术, 2015, 37 (6): 1280- 1287. |
QI H J , WANG Y H , DING J , et al. SAR target recognition based on multi-information dictionary learning and sparse repre sentation[J]. Systems Engineering and Electronics, 2015, 37 (6): 1280- 1287. | |
17 |
ZHAO Z Y , XUE X R , MARIAM I , et al. Integrating target and shadow features for SAR target recognition[J]. Sensors, 2023, 23 (19): 8031.
doi: 10.3390/s23198031 |
18 | 李毅, 杜兰, 周可儿, 等. 基于属性散射中心卷积核调制的SAR目标识别深层网络[J]. 雷达学报, 2024, 13 (2): 443- 456. |
LI Y , DU L , ZHOU K E , et al. Deep network for SAR target recognition based on attribute scattering center convolutional Kernel modulation[J]. Journal of Radars, 2024, 13 (2): 443- 456. | |
19 |
WAGNER S A . SAR ATR by a combination of convolutional neural network and support vector machines[J]. IEEE Trans.on Aerospace and Electronic Systems, 2016, 52 (6): 2861- 2872.
doi: 10.1109/TAES.2016.160061 |
20 |
ZHAO Z Q , JIAO L C , ZHAO J Q , et al. Discriminant deep belief network for high-resolution SAR image classification[J]. Pattern Recognition, 2017, 61, 686- 701.
doi: 10.1016/j.patcog.2016.05.028 |
21 |
SHANG R H , WANG J M , JIAO L C , et al. SAR targets classification based on deep memory convolution neural networks and transfer parameters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (8): 2834- 2846.
doi: 10.1109/JSTARS.2018.2836909 |
22 |
HUANG Z L , DATCU M , PAN Z X , et al. Deep SAR-Net: learning objects from signals[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161, 179- 193.
doi: 10.1016/j.isprsjprs.2020.01.016 |
23 |
刘旗, 张新禹, 刘永祥. 基于门控多尺度匹配网络的小样本SAR目标识别[J]. 系统工程与电子技术, 2022, 44 (11): 3346- 3356.
doi: 10.12305/j.issn.1001-506X.2022.11.08 |
LIU Q , ZHANG X Y , LIU Y X . Few-shot SAR target recognition based on gated multi-scale matching network[J]. Systems Engineering and Electronics, 2022, 44 (11): 3346- 3356.
doi: 10.12305/j.issn.1001-506X.2022.11.08 |
|
24 |
LI W , GAO Y H , ZHANG M M , et al. Asymmetric feature fusion network for hyperspectral and SAR image classification[J]. IEEE Trans.on Neural Networks and Learning Systems, 2023, 34 (10): 8057- 8070.
doi: 10.1109/TNNLS.2022.3149394 |
25 | 徐丰, 金亚秋. 微波视觉与SAR图像智能解译[J]. 雷达学报, 2024, 13 (2): 285- 306. |
XU F , JIN Y Q . Microwave vision and intelligent interpretation of SAR images[J]. Journal of Radars, 2024, 13 (2): 285- 306. | |
26 | 崔宗勇, 杨致远, 蒋阳, 等. 面向SAR目标识别深度网络可理解的类激活映射方法[J]. 雷达学报, 2024, 13 (2): 428- 442. |
CUI Z Y , YANG Z Y , JIANG Y , et al. Interpretable class activation mapping method for SAR target recognition deep networks[J]. Journal of Radars, 2024, 13 (2): 428- 442. | |
27 | 康妙, 计科峰, 冷祥光, 等. 基于栈式自编码器特征融合的SAR图像车辆目标识别[J]. 雷达学报, 2017, 6 (2): 167- 176. |
KANG M , JI K F , LENG X G , et al. SAR image vehicle target recognition based on stacked autoencoder feature fusion[J]. Journal of Radars, 2017, 6 (2): 167- 176. | |
28 | ZHANG J S , XING M D , XIE Y Y . FEC: a feature fusion framework for SAR target recognition based on electromagnetic scattering features and deep CNN features[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 59 (3): 2174- 2187. |
29 |
FENG S J , JI K F , ZHANG L B , et al. SAR target classification based on integration of ASC parts model and deep learning algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 10213- 10225.
doi: 10.1109/JSTARS.2021.3116979 |
30 |
AI J Q , QU Z , ZHAO Z C , et al. A SAR target classification algorithm based on the central coordinate attention module[J]. IEEE Sensors Journal, 2024, 24 (2): 1941- 1952.
doi: 10.1109/JSEN.2023.3338218 |
31 | LEE D H. Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks[C]//Proc. of the Workshop on Challenges in Representation Learning, 2013. |
32 | SOHN K , BERTHELOT D , CARLINI N , et al. Fixmatch: simplifying semi-supervised learning with consistency and confidence[J]. Advances in Neural Information Processing Systems, 2020, 33, 596- 608. |
33 | WANG Y D, CHEN H, HENG Q, et al. Freematch: self-adaptive thresholding for semi-supervised learning[C]//Proc. of the International Conference on Learning Representations, 2023. |
34 | RIZVE M N, DUARTE K, RAWAT Y S, et al. In defense of pseudo-labeling: an uncertainty-aware pseudo-label selection framework for semi-supervised learning[C]//Proc. of the International Conference on Learning Representations, 2021. |
35 | ZHANG B W , WANG Y D , HOU W X , et al. Flexmatch: boosting semi-supervised learning with curriculum pseudo labeling[J]. Advances in Neural Information Processing Systems, 2021, 34, 18408- 18419. |
36 | CHEN H, TAO R, FAN Y, et al. Softmatch: addressing the quantity-quality trade-off in semi-supervised learning[C]//Proc. of the International Conference on Learning Representations, 2023. |
37 |
ZHENG C , JIANG X , LIU X Z . Semi-supervised SAR ATR via multi-discriminator generative adversarial network[J]. IEEE Sensors Journal, 2019, 19 (17): 7525- 7533.
doi: 10.1109/JSEN.2019.2915379 |
38 | WANG C , SHI J , ZHOU Y Y , et al. Semi-supervised learning-based SAR ATR via self-consistent augmentation[J]. IEEE Trans.on Geoscience and Remote Sensing, 2020, 59 (6): 4862- 4873. |
39 | WANG C W , PEI J F , YANG J Y , et al. Recognition in label and discrimination in feature: a hierarchically designed lightweight method for limited data in SAR ATR[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5239613. |
40 | ZHANG X Z , LUO Y Q , HU L P . Semi-supervised SAR ATR via epoch-and uncertainty-aware pseudo-label exploitation[J]. IEEE Trans.on Geoscience and Remote Sensing, 2023, 61, 5209015. |
41 | ZHANG L, YANG M, FENG X C. Sparse representation or collaborative representation: which helps face recognition?[C]// Proc. of the International Conference on Computer Vision, 2011. |
42 | WANG B, LI W F, POH N, et al. Kernel collaborative representation-based classifier for face recognition[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2013. |
43 | CUBUK E D, ZOPH B, SHLENS J, et al. Randaugment: practical automated data augmentation with a reduced search space[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020. |
44 | BERTHELOT D, CARLINI N, GOODFELLOW I, et al. Mixmatch: a holistic approach to semi-supervised learning[C]//Proc. of the Conference on Neural Information Processing Systems, 2019. |
45 | RODRÍGUEZ P, LARADJI I, DROUIN A, et al. Embedding propagation: smoother manifold for few-shot classification[C]// Proc. of the Computer Vision-ECCV 16th European Conference, 2020: 23-28. |
46 | ZHOU X, LIU X M, JIANG J J, et al. Asymmetric loss functions for learning with noisy labels[C]//Proc. of the International Conference on Machine Learning, 2021. |
47 | HUMMEL S R, DARPA Z. The moving and stationary target acquisition and recognition (MSTAR) program[C]//Proc. of the IEEE Workshop on Computer Vision beyond the Visible Spectrum, 1999. |
48 | LOSHCHILOV I, HUTTER F. SGDR: stochastic gradient descent with warm restarts[C]//Proc. of the International Conference on Learning Representations, 2017. |
[1] | 黄丰卓, 冯东, 华洋晟, 黄晓涛. 一种改进的全息SAR相位梯度自聚焦算法[J]. 系统工程与电子技术, 2025, 47(6): 1786-1795. |
[2] | 贾竣皓, 陈学斌, 李璋峰, 叶春茂. 空间群目标ISAR成像与检测方法[J]. 系统工程与电子技术, 2025, 47(6): 1843-1854. |
[3] | 姜智杰, 宋恒, 胡楠, 段兰茜, 曹平. 隧道环境毫米波雷达目标识别与分类算法[J]. 系统工程与电子技术, 2025, 47(5): 1453-1460. |
[4] | 刘宁, 李芳芳, 李新武, 洪文. 结合足迹和相位信息的SAR高层建筑三维重建[J]. 系统工程与电子技术, 2025, 47(5): 1469-1486. |
[5] | 聂千祁, 沙明辉, 朱应申, 王崇宇, 崔念强. 基于盲源分离结合奇异谱分析的雷达多分量信号识别方法[J]. 系统工程与电子技术, 2025, 47(4): 1168-1175. |
[6] | 袁磊, 杨艳娟, 郭毅, 戴鹏. 相关噪声下基于深度学习的LDPC码码率半盲识别算法[J]. 系统工程与电子技术, 2025, 47(4): 1335-1345. |
[7] | 贾钰嘉, 张思乾, 唐涛, 匡纲要. 强化散射特征的机载SAR实传图像盲超分辨重建[J]. 系统工程与电子技术, 2025, 47(3): 753-767. |
[8] | 杨志伟, 杨安东, 梁庚辰, 李相海, 李晓蕊, 刘杰. 多子带融合解动目标径向速度模糊方法[J]. 系统工程与电子技术, 2025, 47(3): 788-796. |
[9] | 陈世龙, 刘霖, 王晓蓓, 曾翰森, 刘亚波, 刘翔. 脉间捷变频SAR快速补偿频域成像处理算法[J]. 系统工程与电子技术, 2025, 47(3): 797-806. |
[10] | 沈夏闰, 李若楠, 张昊田. 基于CVAE-LSTM的服务器KPI异常检测[J]. 系统工程与电子技术, 2025, 47(3): 1019-1027. |
[11] | 贾蕾蕾, 刘利民, 董健. 基于图像结构信息的可见光和SAR图像快速配准[J]. 系统工程与电子技术, 2025, 47(2): 428-441. |
[12] | 刘晓琳, 郭梦娇, 李卓. Dueling DQN优化下的航班延误自适应图卷积循环网络预测方法[J]. 系统工程与电子技术, 2025, 47(2): 568-579. |
[13] | 付卫红, 张鑫钰, 刘乃安. 基于多尺度融合神经网络的同频同调制单通道盲源分离算法[J]. 系统工程与电子技术, 2025, 47(2): 641-649. |
[14] | 蒋李兵, 杨庆伟, 郑舒予, 王壮. 基于拍卖理论的组网雷达多轨道目标ISAR成像资源分配算法[J]. 系统工程与电子技术, 2025, 47(1): 81-93. |
[15] | 孟洋, 周国如, 李洁, 张冰尘. 基于结构化字典学习的判别稀疏微波成像方法[J]. 系统工程与电子技术, 2025, 47(1): 94-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||