

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (11): 3586-3597.doi: 10.12305/j.issn.1001-506X.2025.11.08
• 传感器与信号处理 • 上一篇
收稿日期:2025-03-28
接受日期:2025-07-01
出版日期:2025-11-25
发布日期:2025-12-08
通讯作者:
王勇
E-mail:wangyong6012@hit.edu.cn;120l031017@stu.hit.edu.cn
作者简介:张博雅(2002—),男,博士研究生,主要研究方向为合成孔径雷达图像目标检测
基金资助:Received:2025-03-28
Accepted:2025-07-01
Online:2025-11-25
Published:2025-12-08
Contact:
Yong WANG
E-mail:wangyong6012@hit.edu.cn;120l031017@stu.hit.edu.cn
摘要:
针对星载合成孔径雷达(synthetic aperture radar,SAR)图像舰船目标尺度不一致且易受背景杂波噪声干扰,使得SAR图像舰船目标检测结果存在准确率和定位精度较低的问题,提出一种基于特征融合和定位增强的舰船目标检测算法。首先,通过挖掘特征图相邻键之间的上下文信息,提高网络对舰船目标上下文特征的提取能力。其次,采用路径聚合特征金字塔网络缩减特征传递路径长度,用于传递高分辨定位特征信息,可提高目标边界框定位精度。最后,对全卷积检测器和Transformer检测器的检测结果进行融合,缓解了SAR图像中正负样本比例失衡的问题,并提升了中小型舰船目标的检测效果。基于实测数据集的实验结果表明,所提方法对复杂背景中的舰船目标具有较好的检测性能和泛化能力。
中图分类号:
王勇, 张博雅. 基于特征融合和定位增强的SAR图像舰船目标检测方法[J]. 系统工程与电子技术, 2025, 47(11): 3586-3597.
Yong WANG, Boya ZHANG. Ship target detection method in SAR images based on feature fusion and location enhancement[J]. Systems Engineering and Electronics, 2025, 47(11): 3586-3597.
表1
特征提取网络结构对比"
| 层名称 | 输出大小 | 网络结构 | ||
| ResNet-50 | ResNet-101 | CFN | ||
| Conv1 | 112×112 | 7×7,64,步长2 | 7×7,64,步长2 | 7×7,64,步长2 |
| Conv2_x | 56×56 | 3×3,最大池化,步长2 | 3×3,最大池化,步长2 | 3×3,最大池化,步长2 |
| Conv3_x | 28×28 | |||
| Conv4_x | 14×14 | |||
| Conv5_x | 7×7 | |||
| 1 |
CAO R, WANG Y, LIN Y C, et al. An efficient preprocessing approach for airborne hybrid SAR and ISAR imaging of ship target based on kernel distribution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 5147- 5162.
doi: 10.1109/JSTARS.2022.3183196 |
| 2 | 薛峰涛, 孙天宇, 杨益民, 等. 基于全局特征融合的SAR图像旋转舰船目标检测算法[J]. 系统工程与电子技术, 2024, 46 (12): 4044- 4053. |
| XUE F T, SUN T Y, YANG Y M, et al. Rotated ship target detection algorithm in SAR images based on global feature fusion[J]. Systems Engineering and Electronics, 2024, 46 (12): 4044- 4053. | |
| 3 | QIAN G Z, WANG Y, MAO J. Estimation of Doppler parameters based on PSO for BFSAR ship target imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 4002605. |
| 4 |
LI Y M, LIU J, LI X Y, et al. A lightweight network for ship detection in SAR images based on edge feature aware and fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18, 3782- 3796.
doi: 10.1109/JSTARS.2024.3524402 |
| 5 |
FENG Y, ZHANG Y P, ZHANG X Q, et al. Large convolution kernel network with edge self-attention for oriented SAR ship detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18, 2867- 2879.
doi: 10.1109/JSTARS.2024.3514855 |
| 6 | MAN S, YU W D. ELSD-Net: a novel efficient and lightweight ship detection network for SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2025, 22, 4003505. |
| 7 |
ZENG T J, ZHANG T W, SHAO Z K, et al. CFAR-DP-FW: a CFAR-guided dual polarization fusion framework for large-scene SAR ship detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17, 7242- 7259.
doi: 10.1109/JSTARS.2024.3358058 |
| 8 | 吕进东, 王彤, 唐晓斌. 基于图注意力网络的半监督SAR舰船目标检测[J]. 电子与信息学报, 2023, 45 (5): 1541- 1549. |
| LV J D, WANG T, TANG X B. Semi-supervised SAR ship target detection with graph attention network[J]. Journal of Electronics & Information Technology, 2023, 45 (5): 1541- 1549. | |
| 9 | LI C Y, ZHANG Y, SHI Z G, et al. Moderately dense adaptive feature fusion network for infrared small target detection[J]. IEEE Trans. on Geoscience and Remote Sensing, 2024, 62, 5616712. |
| 10 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2017, 39 (6): 1137- 1149.
doi: 10.1109/TPAMI.2016.2577031 |
| 11 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc. of the European Conference on Computer Vision, 2016: 21−37. |
| 12 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2999−3007. |
| 13 |
ZHAO Q, LIU B H, LYU S C, et al. TPH-YOLOv5++: boosting object detection on drone-captured scenarios with cross-layer asymmetric transformer[J]. Remote Sensing, 2023, 15 (6): 1687.
doi: 10.3390/rs15061687 |
| 14 | 方小宇, 黄丽佳. 基于全局位置信息和残差特征融合的SAR船舶检测算法[J]. 系统工程与电子技术, 2024, 46 (3): 839- 848. |
| FANG X Y, HUANG L J. SAR ship detection algorithm based on global position information and fusion of residual feature[J]. Systems Engineering and Electronics, 2024, 46 (3): 839- 848. | |
| 15 | TANG X, ZHANG J Y, XIA Y Z, et al. PEGNet: an enhanced ship detection model for dense scenes and multiscale targets[J]. IEEE Geoscience and Remote Sensing Letters, 2025, 22, 4004405. |
| 16 | GAO G, WANG Y J, CHEN Y H, et al. An oriented ship detection method of remote sensing image with contextual global attention mechanism and lightweight task-specific context decoupling[J]. IEEE Trans. on Geoscience and Remote Sensing, 2025, 63, 4200918. |
| 17 | SUN Z Z, LENG X G, ZHANG X H, et al. Arbitrary-direction SAR ship detection method for multiscale imbalance[J]. IEEE Trans. on Geoscience and Remote Sensing, 2025, 63, 5208921. |
| 18 | CHEN C X, ZHANG Y M, HU R L, et al. A lightweight SAR ship detector using end-to-end image preprocessing network and channel feature guided spatial pyramid pooling[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21, 4003605. |
| 19 |
HU B Y, MIAO H X. A lightweight SAR ship detection network based on deep multiscale grouped convolution, network pruning, and knowledge distillation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18, 2190- 2207.
doi: 10.1109/JSTARS.2024.3502172 |
| 20 | 李毅, 杜兰, 杜宇昂. 基于特征分解卷积神经网络的SAR图像目标检测方法[J]. 雷达学报, 2023, 12 (5): 1069- 1080. |
| LI Y, DU L, DU Y A. Convolutional neural network based on feature decomposition for target detection in SAR images[J]. Journal of Radars, 2023, 12 (5): 1069- 1080. | |
| 21 | TIAN C Y, LIU D C, XUE F L, et al. Faster and lighter: a novel ship detector for SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21, 4002005. |
| 22 |
MIAO T, ZENG H C, YANG W, et al. An improved lightweight RetinaNet for ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 4667- 4679.
doi: 10.1109/JSTARS.2022.3180159 |
| 29 | GHIASI G, CUI Y, SRINIVAS A, et al. Simple copy-paste is a strong data augmentation method for instance segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2021: 2917−2927. |
| 30 |
GUAN Y N, HU H P, LIU W, et al. A false-alarm-controllable modified AdaBoost wake detection method using SAR images[J]. IEEE Sensors Journal, 2023, 23 (23): 29394- 29405.
doi: 10.1109/JSEN.2023.3327297 |
| 31 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770–778. |
| 32 |
LI Y H, YAO T, PAN Y W, et al. Contextual transformer networks for visual recognition[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2023, 45 (2): 1489- 1500.
doi: 10.1109/TPAMI.2022.3164083 |
| 33 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. [2025-02-18]. https://arxiv.org/pdf/1706.03762. |
| 34 |
ZHANG T W, ZHANG X L, LI J W, et al. SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13 (18): 3690.
doi: 10.3390/rs13183690 |
| 35 |
WANG Y Y, WANG C, ZHANG H, et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11 (7): 765.
doi: 10.3390/rs11070765 |
| 36 | LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]∥Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117−2125. |
| 23 | WANG F, CHEN C C, ZENG W M. Hybrid multiscale SAR ship detector with CNN-transformer and adaptive fusion loss[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21, 4015005. |
| 24 |
ZHOU Y, JIANG X, XU G Z, et al. PVT-SAR: an arbitrarily oriented SAR ship detector with pyramid vision transformer[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16, 291- 305.
doi: 10.1109/JSTARS.2022.3221784 |
| 25 |
严春满, 王铖. 基于选择性坐标注意力的SAR图像舰船目标检测[J]. 电子学报, 2023, 51 (9): 2481- 2491.
doi: 10.12263/DZXB.20211416 |
|
YAN C M, WANG C. Ship target detection in SAR image based on selective coordinate attention[J]. Acta Electronica Sinica, 2023, 51 (9): 2481- 2491.
doi: 10.12263/DZXB.20211416 |
|
| 26 | WU H Y, YU L, LI X W, et al. CTF-Net: a convolutional and transformer fusion network for SAR ship detection[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 4010005. |
| 27 |
ZHOU S C, ZHANG M, WU L, et al. Lightweight SAR ship detection network based on transformer and feature enhancement[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17, 4845- 4858.
doi: 10.1109/JSTARS.2024.3362954 |
| 28 |
CHEN B J, YU C R, ZHAO S, et al. An anchor-free method based on transformers and adaptive features for arbitrarily oriented ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17, 2012- 2028.
doi: 10.1109/JSTARS.2023.3325573 |
| [1] | 蒋明煜, 张顺生, 肖思瑶. 面向轻量级交叉注意力卷积网络的SAR目标识别[J]. 系统工程与电子技术, 2025, 47(9): 2853-2861. |
| [2] | 李响, 曾顶, 殷君君, 国贤玉, 杨健. 基于梯度融合的极化SAR图像引导滤波[J]. 系统工程与电子技术, 2025, 47(9): 2890-2904. |
| [3] | 朱国辉, 杨琳, 汪洋, 郑陶冶. 一种高速机动平台SAR成像PRF改进设计方法[J]. 系统工程与电子技术, 2025, 47(9): 2905-2912. |
| [4] | 付卫红, 彭文洪, 刘乃安. 混合注意力优化的SAR图像小目标检测方法[J]. 系统工程与电子技术, 2025, 47(8): 2519-2526. |
| [5] | 倪康, 贾文杰, 邹旻瑞, 郑志忠. 基于动态聚合网络的SAR目标检测[J]. 系统工程与电子技术, 2025, 47(8): 2527-2539. |
| [6] | 周东平, 阮航, 沙明辉, 王崇宇, 崔念强, 鲁耀兵. 基于特征融合的Fast-CNN的复杂波形调制识别[J]. 系统工程与电子技术, 2025, 47(7): 2165-2175. |
| [7] | 符小卫, 王辛夷, 乔哲. 基于APIQ算法的多无人机攻防对抗策略[J]. 系统工程与电子技术, 2025, 47(7): 2205-2215. |
| [8] | 张琬滢, 高由兵, 李泽一, 李鹏飞, 张伟. 基于双路径特征融合网络的背景信号抑制算法[J]. 系统工程与电子技术, 2025, 47(7): 2406-2413. |
| [9] | 黄丰卓, 冯东, 华洋晟, 黄晓涛. 一种改进的全息SAR相位梯度自聚焦算法[J]. 系统工程与电子技术, 2025, 47(6): 1786-1795. |
| [10] | 张新征, 闫梦可, 朱晓林. 噪声伪标签容忍的半监督SAR目标识别[J]. 系统工程与电子技术, 2025, 47(6): 1796-1805. |
| [11] | 贾竣皓, 陈学斌, 李璋峰, 叶春茂. 空间群目标ISAR成像与检测方法[J]. 系统工程与电子技术, 2025, 47(6): 1843-1854. |
| [12] | 符小卫, 王辛夷, 乔哲. 基于ASDDPG算法的多无人机对抗策略[J]. 系统工程与电子技术, 2025, 47(6): 1867-1879. |
| [13] | 刘宁, 李芳芳, 李新武, 洪文. 结合足迹和相位信息的SAR高层建筑三维重建[J]. 系统工程与电子技术, 2025, 47(5): 1469-1486. |
| [14] | 何肖阳, 陈小龙, 杜晓林, 苏宁远, 袁旺, 关键. 基于CBAM-Swin-Transformer迁移学习的海上微动目标分类方法[J]. 系统工程与电子技术, 2025, 47(4): 1155-1167. |
| [15] | 贾钰嘉, 张思乾, 唐涛, 匡纲要. 强化散射特征的机载SAR实传图像盲超分辨重建[J]. 系统工程与电子技术, 2025, 47(3): 753-767. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
