系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (11): 3586-3597.doi: 10.12305/j.issn.1001-506X.2025.11.08

• 传感器与信号处理 • 上一篇    

基于特征融合和定位增强的SAR图像舰船目标检测方法

王勇(), 张博雅()   

  1. 哈尔滨工业大学电子与信息工程学院,黑龙江 哈尔滨 150001
  • 收稿日期:2025-03-28 接受日期:2025-07-01 出版日期:2025-11-25 发布日期:2025-12-08
  • 通讯作者: 王勇 E-mail:wangyong6012@hit.edu.cn;120l031017@stu.hit.edu.cn
  • 作者简介:张博雅(2002—),男,博士研究生,主要研究方向为合成孔径雷达图像目标检测
  • 基金资助:
    研发计划(2024YFB3909800);国家杰出青年科学基金(62325104)资助课题

Ship target detection method in SAR images based on feature fusion and location enhancement

Yong WANG(), Boya ZHANG()   

  1. School of Electronics and Information Engineering,Harbin Institute of Technology,Harbin 150001,China
  • Received:2025-03-28 Accepted:2025-07-01 Online:2025-11-25 Published:2025-12-08
  • Contact: Yong WANG E-mail:wangyong6012@hit.edu.cn;120l031017@stu.hit.edu.cn

摘要:

针对星载合成孔径雷达(synthetic aperture radar,SAR)图像舰船目标尺度不一致且易受背景杂波噪声干扰,使得SAR图像舰船目标检测结果存在准确率和定位精度较低的问题,提出一种基于特征融合和定位增强的舰船目标检测算法。首先,通过挖掘特征图相邻键之间的上下文信息,提高网络对舰船目标上下文特征的提取能力。其次,采用路径聚合特征金字塔网络缩减特征传递路径长度,用于传递高分辨定位特征信息,可提高目标边界框定位精度。最后,对全卷积检测器和Transformer检测器的检测结果进行融合,缓解了SAR图像中正负样本比例失衡的问题,并提升了中小型舰船目标的检测效果。基于实测数据集的实验结果表明,所提方法对复杂背景中的舰船目标具有较好的检测性能和泛化能力。

关键词: 合成孔径雷达, 舰船目标检测, 注意力机制, 特征融合, 目标定位

Abstract:

Due to the inconsistent scale of ship targets in spaceborne synthetic aperture radar (SAR) images and their susceptibility to background clutter noise, the accuracy and localization precision of SAR image ship target detection results are often limited. In view of these problems, a ship target detection algorithm based on feature fusion and localization enhancement is proposed. Firstly, by mining the contextual information between adjacent keys in the feature map, the ability of network to extract the contextual features of ship targets is improved. Secondly, the path aggregation feature pyramid network is adopted to shorten the length of feature transmission paths, which is used to transfer high-resolution positioning feature information, thereby improving the localization accuracy of the target bounding box. Finally, the detection results of the fully convolutional detector and the Transformer detector are fused to alleviate the problem of imbalanced positive and negative sample ratios in SAR images and improve the detection effect of small and medium-sized ship targets. Experimental results based on the measured dataset show that the proposed method has good detection performance and generalization ability in complex backgrounds for ship target.

Key words: synthetic aperture radar (SAR), ship target detection, attention mechanism, feature fusion, target location

中图分类号: