系统工程与电子技术, 2023, 46(1): 280-289 doi: 10.12305/j.issn.1001-506X.2024.01.32

制导、导航与控制

改进的多项式曲线拟合轨迹预测算法

黄万炎1, 杜万和1,2, 杨淑珍1,2, 俞涛1

1. 上海大学机电工程与自动化学院, 上海 200444

2. 上海第二工业大学智能制造与控制工程学院, 上海 201209

Trajectory prediction algorithm based on improved polynomial curve fitting

HUANG Wanyan1, DU Wanhe1,2, YANG Shuzhen1,2, YU Tao1

1. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China

2. School of Intelligent Manufacturing and Control Engineering, Shanghai Polytechnic University, Shanghai 201209, China

通讯作者: 杜万和

收稿日期: 2022-09-27  

Received: 2022-09-27  

作者简介 About authors

黄万炎(1990—),男,硕士研究生,主要研究方向为3D轮廓检测及轨迹预测 。

杜万和(1988—),男,讲师,博士研究生,主要研究方向为智能制造、计算机视觉、移动机器人 。

杨淑珍(1978—),女,副教授,博士,主要研究方向为智能控制、机器人 。

俞涛(1968—),男,教授,博士,主要研究方向为机电一体化技术和计算机集成制造系统 。

摘要

针对传统多项式曲线拟合轨迹预测算法对复杂多变的轨迹预测准确率不高问题, 提出改进的多项式曲线拟合轨迹预测算法。首先, 获得轨迹的曲率、挠率阈值; 然后, 通过该阈值识别预测误差可能较大的轨迹部位, 并采用插值滚动预测算法进行预测; 最后, 采用双误差预测值更新算法, 对预测值进行更新。仿真结果表明, 相较于传统多项式曲线拟合轨迹预测算法, 所提算法的平均位移误差(average displacement error, ADE)下降了42.77%, 最终位移误差(final displacement error, FDE)下降了36.62%, 从而验证了所提算法的可行性和有效性。

关键词: 多项式曲线拟合 ; 轨迹预测 ; 曲率 ; 挠率 ; 误差

Abstract

Aiming at the problem that the traditional polynomial curve fitting trajectory prediction algorithm is not accurate enough for complex and changeable trajectory prediction, an improved polynomial curve fitting trajectory prediction algorithm is proposed. Firstly, the curvature and torsion thresholds of the trajectory are obtained. Secondly, the trajectory parts with larger prediction errors are identified by the thresholds above, and the interpolation rolling prediction algorithm is used for prediction. Finally, the double errors predictive value update algorithm is used to update the predicted value. Simulation results show that compared with the traditional polynomial curve fitting trajectory prediction algorithm, the average displacement error (ADE) of the proposed algorithm decreases by 42.77%. The final displacement error (FDE) reduces by 36.62%, which verifies the feasibility and the effectiveness of the proposed algorithm.

Keywords: polynomial curve fitting ; trajectory prediction ; curvature ; torsion ; error

PDF (2730KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

黄万炎, 杜万和, 杨淑珍, 俞涛. 改进的多项式曲线拟合轨迹预测算法. 系统工程与电子技术[J], 2023, 46(1): 280-289 doi:10.12305/j.issn.1001-506X.2024.01.32

HUANG Wanyan. Trajectory prediction algorithm based on improved polynomial curve fitting. Systems Engineering and Electronics[J], 2023, 46(1): 280-289 doi:10.12305/j.issn.1001-506X.2024.01.32

0 引言

目前, 想要快速、准确地预测无规律、复杂多变的运动目标轨迹, 仍然具有很大的挑战; 然而这样的轨迹预测, 在很多领域都有需要。在自动驾驶领域, 为了避免发生事故, 需要对路上车辆、行人的运动轨迹进行实时预测, 然而车辆的轨迹充满不确定性, 行人的轨迹主观性很强, 比较随意, 使得预测比较困难[1-2]。在围捕运动目标时, 为了更快速、准确地围捕运动目标, 需要对运动目标进行实时预测, 然而围捕方无法准确获知运动目标的运动参数, 而且运动目标具有较强的逃逸能力, 使得围捕方很难完成围捕任务[3-4]。在涂胶应用中, 目标轮廓弯曲复杂。激光传感器在获取目标轮廓时, 目标轮廓容易偏离扫描区域, 因此需要对目标轮廓进行轨迹预测, 使得传感器更加准确地获取轮廓数据。对于无规律、复杂多变的轨迹预测, 设计合适的算法主要面临两个难点: 其一, 轨迹不断变化, 动态更新, 很难实时、快速地预测运动目标的轨迹, 因此对算法的实时性要求较高; 其二, 轨迹无规律, 弯弯曲曲, 复杂多变, 很难准确地预测运动目标的轨迹, 因此对预测算法的准确性要求较高。

常用的动态轨迹预测算法主要有3类[5-6]。第1类是基于曲线拟合的轨迹预测算法, 所选取的曲线通常为多项式曲线。传统的多项式曲线拟合轨迹预测算法(polynomial curve fitting trajectory prediction algorithm, PCFTPA)具有原理简单、计算量小、预测速度快等特点, 在对实时性要求较高的场合, 具有很好的优势。胡俊等[7]在研究围捕机器人对移动目标的快速围捕时, 考虑到移动目标运动轨迹复杂多变, 机器人需要先通过预测算法快速地预判移动目标未来一小部分的运动轨迹, 然后才能根据预测的轨迹对运动目标实施围捕这一情况, 选择曲线拟合轨迹预测算法, 该算法很好地满足了快速预测的需求。张强等[8]在嵌入式态势显示设备中, 针对运动目标轨迹更新延迟的问题, 提出基于曲线拟合的轨迹预测算法。该算法只需将靠近预测点的部分采样点进行拟合, 无需存储大量的历史数据, 使得算法计算量小、所需存储空间较小, 很好地解决了嵌入式态势显示设备对运动目标轨迹更新延迟的问题。李世杰等[9]需要对高超声速再入滑翔目标进行轨迹预测。考虑到运动目标具有较强的机动能力, 其轨迹是复杂多变的, 并且预测方无法准确获知运动目标实际机动模式的信息, 作者采用最小二乘曲线拟合算法进行预测。Cao等[10]充分利用多项式曲线拟合的快速性优势, 实时预测动态目标在未来一小段时间内的运动轨迹, 进而实现对动态目标的围捕。可见, PCFTPA应用于轨迹预测的优势非常明显, 即计算量小、预测速度快。然而传统的多项式曲线拟合主要是通过输入样本点求出多项式的系数, 这样一条理论曲线对于真实、复杂多变的轨迹并不能很好地逼近, 导致多项式曲线拟合对于复杂多变的轨迹预测无法取得较好的预测效果。因此, 很多学者尝试研究第2类、第3类轨迹预测算法。第2类是基于自适应滤波器的轨迹预测算法, 其优点是对采样点的异常情况适应性强[11-14]。为了更准确地预测飞机爬升的轨迹, Thipphavong等[15]提出了一种基于观测数据动态调整模型参数的自适应轨迹预测算法。Han等[16]为了解决具有动态时间尺度的浮萍飘移轨迹预测问题, 设计了一种自适应参数变时间尺度卡尔曼滤波器, 可精确地预估浮萍的轨迹。第3类是基于神经网络的动态轨迹预测算法[17-21], 该算法对于非线性系统具有很好的映射能力。Zhang等[22]为了准确地预测乒乓球在未来时刻的位置, 提出基于多层神经网络的轨迹预测算法。Akabane等[23]为了使移动机器人更准确地跟随人, 提出了基于长短期记忆(long short-term memory, LSTM)网络的轨迹预测算法。Yang等[24]为了更合理地预测行人的轨迹, 提出了一种基于图注意和卷积LSTM的模型; 该模型具有较高的预测精度, 生成的轨迹更符合社会理性和物理约束。虽然第2类、第3类算法对于复杂多变的轨迹预测准确率较高, 但实时性较差, 因此本文选择第1类算法进行研究。第1类轨迹预测算法研究的不足为: ①没有对预测误差较大的轨迹部位进行准确识别并加以处理; ②未考虑采样点间隔不一对轨迹预测的负面影响; 原始点数据采集时, 由于采集速度不均, 导致点与点之间的间隔大小不一以及轨迹变化的连续性受影响, 对轨迹预测的结果有负面影响; ③忽略了采样点之间时序上及空间上的关系。数据采集是有先后顺序的, 而且相邻两个采样点变化并不会很大, 因此相邻两次预测的误差较接近。

因此, 本文在PCFTPA基础上, 提出一种改进的PCFTPA (improved PCFTPA, IPCFTPA)。改进之处为: ①通常预测误差较大的部位, 轨迹的曲率、挠率值也较大。本文通过曲率、挠率阈值确定算法(curvature and torsion thresholds determination algorithm, CTTDA)获得曲率、挠率阈值, 建立曲率、挠率及误差的对应关系, 从而将可能导致预测误差较大的轨迹部位识别出来并加以处理; ②多项式曲线拟合轨迹预测受轨迹不规则程度的影响, 另外采样点之间间隔不一, 因此本文提出插值滚动预测算法(interpolation-rolling prediction algorithm, IRPA)。通过样条曲线插值, 得到采样间隔较小且较均匀的点, 然后截取末了一小段轨迹进行预测, 使得所需预测的轨迹更加规则, 采样点也更加均匀。在这些点的基础上, 得到少于预测目标点数、较准确的预测点, 接着将这些预测点当做待拟合点再次进行预测, 如此循环, 直到完成预测任务; ③通过双误差预测值更新算法(double errors predictive value update algorithm, DEPVUA)建立采样点之间时序上及空间上的关系。该算法不仅将未更新时的预测值误差进行了考虑, 还将单误差预测值更新时的误差也进行了考虑, 进而建立双误差预测值更新机制, 实现对预测值的纠正。

1 多项式曲线拟合轨迹预测模型

1.1 问题描述及轨迹表示

图 1(a)中, L为运动目标的实际轨迹, L′为L的未来一小段的预测轨迹。由于目标不断运动, 轨迹L的形状也不断变化, 因此需要根据历史轨迹实时、动态地预测L′。

图1

图1   轨迹离散化示意图

Fig.1   Schematic diagram of trajectory discretization


在三维空间中, 运动目标的轨迹是一条连续的曲线, 然而在获取轨迹时, 只能通过一定频率的采样得到离散的轨迹点。根据Nyquist-Shannon采样定理[25]可知, 连续的信号可用一定时间间隔的采样点完整地表示, 当采样频率大于原始信号最大频率的2倍时, 可根据采样点完整地恢复原始信号。因此, 对于运动目标轨迹预测的研究, 可转化为对轨迹离散点的研究(见图 1(b))。通过对轨迹离散点的预测, 得到所需要的预测轨迹L′。

轨迹L可表示为

$L \approx\left\{P_i\left(x_i, y_i, z_i\right), i=1, 2, \cdots, N\right\}$

假设这些离散的点均在空间参数曲线上

$r(t)=\{x(t), y(t), z(t)\}, t \in[a, b]$

其中, t是曲线的参数。那么, 曲线r(t)的空间特征可以反映轨迹的空间特征。因此, 可以通过对曲线r(t)的研究, 研究轨迹L的预测。

本文选择确定的空间参数曲线r(t)表示空间中运动目标的轨迹, 并对r(t)作如下限定:

(1) 曲线为连续光滑的曲线, 即r(t)具有连续的一阶导数, 排除曲线包含比较“尖锐”的点;

(2) 曲线为正则曲线, 即在曲线的每一点处, r′(t)≠0, 排除了切向量变化不连续的特殊点, 比如带尖点的曲线;

(3) 对r(t)的采样频率远大于r(t)最大频率的2倍。

1.2 多项式曲线拟合算法原理

对于空间中的轨迹, 可在投影面中分别进行曲线拟合。设投影面上的采样点为{(xi, yi), i=1, 2, …, N}, 用k(k < N)次多项式进行拟合。该多项式可表示为

$y=a_k x^k+a_{k-1} x^{k-1}+\cdots+a_1 x+a_0$

根据采样点, 通过最小二乘法, 便可计算出多项式的系数。

1.3 基于多项式曲线拟合的空间轨迹预测模型

对于无规律、复杂多变的轨迹, 未来一小段的轨迹只与较近部分的历史轨迹有关, 而与较远的历史轨迹没有关系[8]。因此, 在轨迹预测时, 只需对较近的轨迹点进行拟合。轨迹预测模型示意图如图 2所示, 预测过程如下:

图2

图2   轨迹预测模型示意图

Fig.2   Schematic diagram of the trajectory prediction model


步骤1  选取N个历史轨迹点, 作为待拟合点(滑动窗口S内);

步骤2  根据待拟合点进行最小二乘拟合, 得到一条与轨迹相近的空间曲线;

步骤3  通过一定的方式外推得到未来的一小段轨迹L′上的轨迹点;

步骤4  当获取新的采样点时, 滑动窗口S往前一步, 回到步骤2继续进行预测。

图 3更直观地展示了轨迹预测模型的动态性。

图3

图3   轨迹动态预测模型示意图

Fig.3   Schematic diagram of trajectory dynamic prediction model


1.4 评价指标

平均位移误差(average displacement error, ADE)和最终位移误差(final displacement error, FDE)通常用来评估轨迹预测算法的准确性[21, 24, 26]。ADE为平均距离误差, 对每一个预测点与对应点之间的距离求平均值。其表达式为

$\mathrm{ADE}=\frac{1}{M} \sum\limits_{i=1}^M\left\|P_i^{\prime}-P_i\right\|_2$

式中: Pi为预测点; Pi为实际点; M为预测点数。

FDE为最后一个预测点的距离误差, 主要体现最后一个预测点的偏离程度。其表达式为

$\mathrm{FDE}=\left\|P_M^{\prime}-P_M\right\|_2$

式中: PM为第M个预测点; PM为与PM对应的实际点。

2 改进的曲线拟合轨迹预测算法

2.1 曲率与挠率阈值的确定

空间曲线的特征可以用曲率和挠率来反映, 因此可充分利用曲率、挠率对曲线的不同部位进行表征[27-29]。曲率的几何意义为曲线的切向量对弧长的旋转速度。曲线在某一点的弯曲程度越大, 切向量对于弧长的旋转速度就越大, 即曲率也会越大。因此, 某一点的曲率可以反映曲线在该点的弯曲程度。挠率的绝对值是曲线的副法向量对于弧长的旋转速度。曲线在某一点的扭转程度越大, 副法向量对于弧长的旋转速度就越大, 因此挠率可以反映空间中曲线在某一点处的扭转程度。

对于空间参数曲线r(t), 其在t处的曲率为

$k(t)=\frac{\left|r^{\prime}(t) \times r^{\prime \prime}(t)\right|}{\left|r^{\prime}(t)\right|^3}$

r(t)在t处的挠率为

$\tau(t)=\frac{\left(r^{\prime}(t), r^{\prime \prime}(t), r^{\prime \prime \prime}(t)\right)}{\left|r^{\prime}(t) \times r^{\prime \prime}(t)\right|^2}$

在轨迹预测时, 预测误差与曲率、挠率值一般具有如下的关系: 当预测误差较大时, 曲率或挠率值也较大, 即曲线弯曲程度较严重的部分或扭曲程度较严重的部分预测准确率较低; 反之亦然。因此, 可通过确定曲率、挠率阈值, 识别轨迹预测误差较大的部分。CTTDA算法的流程如下。

算法1  CTTDA
输入  动态更新的待拟合点集P
输出  阈值Kmax
1.  set errorMax; //用于确定局部误差最大值
2.  for each prediction
3.    //K为待拟合点的曲率或挠率
4.    K=calculate K(P);
5.    K_mean=mean(K); //计算K的平均值
6.    P′=curvefitPredict(P); //PCFTPA
7.    errorMean=getMeanError(P, P′);
8.    //找到误差局部最大值
9.    if errorMean>errorMax and other conditions
10.      errorMax=errorMean;
11.    end if
12.    //确定曲率或挠率阈值
13.    if errorMean>errorMax and other conditions
14.      Kmax=K_mean;
15.    end if
16.  end for
17.  output Kmax

(1) 设置errorMax初始值(第1行);

(2) 实时计算待拟合点集的曲率或挠率平均值(第4行、第5行);

(3) 根据待拟合点预测未来的轨迹点, 并计算误差(第6行、第7行);

(4) 确定局部误差最大值(第9~11行);

(5) 当误差值超过errorMax, 将当前的曲率或挠率平均值作为曲率、挠率的阈值Kmax(第15~17行);

(6) 对errorMax可以先赋较小值, 并保证先确定误差局部最大值errorMax, 然后才执行Kmax的赋值。另外, 局部误差最大值和曲率、挠率阈值均只确定一次。

2.2 IRPA

2.2.1 轨迹预测与采样间隔的关系

缩小采样间隔可以提高轨迹预测准确率。如图 4所示, 当输入的待拟合点缩小采样间隔时, 轨迹采样点数增多, 滑动窗口内的轨迹变短, 所代表的轨迹段更有规律, 此时相同阶数的拟合函数更容易逼近该曲线段, 预测结果也会更准确。

图4

图4   缩小采样间隔的轨迹预测示意图

Fig.4   Trajectory prediction schematic diagram with the reduced sampling interval


2.2.2 算法具体步骤

IRPA算法充分利用了采样间隔对轨迹预测的影响, 通过对采样点进行插值, 得到更密集的点, 然后选择靠近预测位置的部分点进行预测。由于所预测的点准确率很高, 因此可将其近似当做真实的点, 选取这些点继续进行预测, 就可以滚动地预测所需的轨迹。

  

算法2  IRPA
输入  待拟合点集P
输出  预测点P′(最终预测M个点)
1.  set predictNumber=K; //单次预测点数
2.  newP=interp1(P); //插值得到较密的点集
3.  N=M/K; //MK的倍数, N为滚动次数
4.  for i=1 to N
5.    //取最后N个点作为待拟合点
6.    P_=newP(end-N: end);
7.    tempP=curvefitPredict(P_); //PCFTPA
8.    //将预测点放进待拟合点, 进行滚动预测
9.    newP=append(tempP);
10.      //保存每一轮的预测结果
11.      P′=append(tempP);
12.  end for
13.  output P

新窗口打开| 下载CSV


具体步骤如下:

(1) 确定单次预测点数K(第1行);

(2) 通过插值, 缩小采样间隔(第2行);

(3) 对插值后的点集 newP, 取最后N个点作为待拟合点P_(第6行);

(4) 对待拟合点进行拟合, 得到K个预测点 tempP(第7行);

(5) 将所预测的点 tempP添加到 newP点集中, 构成新的待拟合点集(第9行);

(6) 循环预测N次, 输出预测点P′(第13行)。

2.3 DEPVUA

利用预测值之间的误差对预测值进行更新是很有必要的[30]图 5是相邻两次预测中的xyz方向的误差对比; 两次预测分别预测12个点。由图 5可知, 相邻两次预测的误差有相同的规律, 即随着预测点数的增多, 误差值越来越大, 并且在相同预测点位置误差大小相近。这是由于相邻两次预测时, 滑动窗口内的轨迹段整体相似, 用相同算法预测得到的结果也会相近。

图5

图5   相邻两个预测点的误差比较

Fig.5   Comparison of error of two adjacent prediction points


基于相邻两次预测误差的规律, 可得到如下的预测值更新策略。设

${\bf error}_{i-1}=\boldsymbol{P}_{i-1}^{\prime}-\boldsymbol{P}_{i-1}$

$\begin{gathered}{\bf newSingleP}_i^{\prime}=\boldsymbol{P}_i^{\prime}-k_1 \times {\bf error}_{i-1} \\{\bf newDoubleP}_i^{\prime}=\boldsymbol{P}_i^{\prime}-k_1 \times {\bf error}_{i-1}-k_2 \times {\bf newSingleError}_{i-1}\end{gathered}$

式中: Pi-1为第i-1次预测值, Pi-1为第i-1次真实值, newSinglePi为第i次预测时通过单误差预测值更新算法(single error predictive value update algorithm, SEPVUA)所计算的预测值, newSingleError′i为其对应的误差; newDoublePi为双误差更新得到的预测值, 该值即为算法最终的预测值。k1为预测值更新粗调系数, k2为预测值更新微调系数, k1k2均大于0。单步预测时, 双误差预测值更新示意图如图 6所示。

图6

图6   单步预测中双误差预测值更新示意图

Fig.6   Double error prediction value update schematic diagram in single-step prediction


图 6可知, “双误差”指的是无更新时计算的预测值误差 errori-1, 以及 SEPVUA所计算的误差 newSingleErrori-1

对于k(k>1)步预测, 由于第i次预测时, 第i-1次预测中的k个误差值只有第一个误差可利用, 因此 errori-1只能取近似组合值。如图 7所示, 为 errori-1的取值过程(假设k取3)。

图7

图7   多步预测第i-1次误差取值过程(k=3)

Fig.7   Process of error value extraction in step i-1 in multi-step prediction (k=3)


具体算法流程如下:

  

算法3  DEPVUA
输入  预测点Pi, 上一次预测误差errori-1
输出  更新的预测点newDoublePi
1.  for i=1, 2, …
2.    //单误差预测值更新
3.    if i>k
4.      newPi=Pi - k1×errori-1;
5.      newSingleErrori=newSinglePi-Pi;
6.    end if
7.    if i>k+1
8.      //双误差预测值更新
9.      newDoublePi=
10.  Pi-k1×errori-1-k2×newSingleErrori-1;
11.    end if
12.  end for
13.  output newDoublePi

新窗口打开| 下载CSV


2.4 预测值偏差限制

相邻两次预测滑动窗口内的数据变化并不是很大, 预测值之间也不会差别太大,因此可以限制预测值之间的偏差在一定的范围。设

${\bf error}_i^{\prime}=\left|\boldsymbol{P}_i^{\prime}-\boldsymbol{P}_{i-1}^{\prime}\right|, i=1, 2, \cdots, M$

式中: Pi为第i个预测点, 则errori限制如下:

$k_2 \times {\bf error}_{i-1}^{\prime}<{\bf error}_i^{\prime}<k_1 \times {\bf error}_{i-1}^{\prime}$

式中: k1k2为偏差的缩放系数, 满足0 < k2 < 1 < k1

2.5 算法流程

本文所设计IPCFTPA算法的流程如图 8所示。

图8

图8   IPCFTPA流程图

Fig.8   Flowchart of IPCFTPA


(1) 数据预处理阶段, 对于不光滑的轨迹数据需进行平滑处理, 比如采用3次B样条曲线拟合;

(2) 曲率、挠率阈值可设置较大的初始值, 使得算法一开始先按PCFTPA进行预测;

(3) 一旦曲率、挠率阈值最终确定, CTTDA不再执行;

(4) 当当前曲率、挠率值小于阈值时, 说明该位置误差在可接受的范围, 选择PCFTPA进行预测; 当曲率、挠率值大于阈值时, 说明该位置误差可能较大, 选择IRPA进行预测;

(5) 对于PCFTPA及IRPA的预测值, 均需通过DEPVUA进行更新, 并将更新过的预测值作为最终的预测值。

3 算法验证

为充分验证本文算法的可行性和有效性, 选择3组仿真数据及3组真实数据进行详细的对比分析。本文将所提算法与PCFTPA、基于卡尔曼滤波的轨迹预测算法(Kalman filtering trajectory prediction algorithm, KF)、基于反向卷积神经网络的轨迹预测算法(back propagation neural network trajectory prediction algorithm, BPNN)、LSTM作对比。另外, 本文研究的算法针对空间中复杂多变、未知的轨迹, 因此LSTM和BPNN没有提前训练模型, 而是根据部分历史轨迹点实时训练并预测。本次实验所使用的仿真软件为Matlab R2019b。

3.1 数据描述

(1) 表 1为3类仿真数据的参数方程及其描述, 图 9为仿真数据的三维图。

表1   3类仿真数据及其描述

Table 1  Three types of simulation data and their descriptions

数据参数方程描述
1$\left\{\begin{array}{l}x=\sin t \\y=\cos t \\z=\cos t\end{array}\right.$t∈[0, 2π]
2/3次B样条曲线, 点数230
3$\left\{\begin{array}{l}x=t \cos t \\y=t \sin t \\z=t\end{array}\right.$t∈[0, 8π]
点数为300

新窗口打开| 下载CSV


图9

图9   仿真数据三维图

Fig.9   3D diagram of simulation data


(2) 3组真实数据分别从3组不同的三维轮廓数据源提取, 数据特征类似, 处理方式也类似。本文对真实数据1作详细说明。真实数据1如图 10所示。该数据是通过三维激光传感器扫描得到目标轮廓的点云, 然后提取目标轮廓的中心线而得。轨迹数据点为370个。

图10

图10   真实三维空间轨迹

Fig.10   Real 3D trajectory


由于真实数据存在一系列问题, 包括局部数据不光滑、部分轨迹点跳跃性比较大等, 因此在数据预处理阶段需对其进行样条拟合, 使轨迹相对光滑[31-33]。预处理后的轨迹如图 11所示, 数据点为370个。

图11

图11   预处理后的轨迹

Fig.11   Preprocessed trajectory


3.2 重要参数选取

以仿真数据1为例, 探究IPCFTPA中重要参数(多项式拟合系数、插值间隙、粗调系数和微调系数)对轨迹预测的影响。

图 12为不同拟合阶数对轨迹预测的情况。由图 12可知, 拟合阶数并不是越大越好。拟合阶数过大, ADE、FDE、单次预测耗时均增大。综合拟合阶数对3个因变量的影响, 对于仿真数据1, 本文选择拟合阶数为3。

图12

图12   不同拟合阶数的轨迹预测情况

Fig.12   Trajectory prediction with different fitting orders


图 13为粗调系数及微调系数对轨迹预测的影响。其中, 图 13(a)为SEPVUA中粗调系数对轨迹预测结果的影响, 图 13(b)为DEPVUA中微调系数对轨迹预测的影响。

图13

图13   调节系数对轨迹预测的影响

Fig.13   Influence of adjustment coefficient on trajectory prediction


图 13可知, k1取0.5、k2取0.55时对轨迹预测效果最好。

3.3 对比实验

图 14用仿真数据1对比了PCFTPA、IRPA、SEPVUA及DEPVUA的ADE情况。其中, 相对于PCFTPA, IRPA的ADE降低了40.3%, SEPVUA的ADE降低了51.71%, DEPVUA的ADE降低了59.7%, 验证了DEPVUA的可行性和有效性。后续IPCFTPA均采用IRPA+DEPVUA。

图14

图14   仿真数据1不同算法不同位置的ADE情况

Fig.14   ADE situation of different algorithms at different positions in simulation data 1


图 15用仿真数据1探究不同方法、不同预测步长对轨迹预测的影响。

图 15(a)图 15(b)具有相同的规律: 步长不同时, IPCFTPA相较于其他方法, ADE、FDE均最低; 随着步长的增大, 不同方法ADE、FDE均变大。从耗时上看, BPNN、LSTM由于在预测时还需训练模型, 因此耗时都比较长, 而PCFTPA、IPCFTPA、KF耗时均比较小。

图15

图15   仿真数据1用不同方法在不同预测步长下的轨迹预测情况

Fig.15   Trajectory prediction with different prediction steps by different methods in simulation data 1


对于第2组、第3组仿真数据及真实数据1的预测结果如表 2表 3表 4所示(选取10个历史轨迹点, 预测步长为12, 耗时均指单次预测耗时; 真实数据2、3不同方法的对比情况与真实数据1类似, 预测结果在表 5中展示)。

表2   仿真数据2不同方法的预测情况

Table 2  Simulation data 2 prediction of different methods

算法ADE/mmFDE/mm耗时/ms
IPCFTPA0.004 40.015 93.902 3
PCFTPA0.008 20.027 00.737 3
KF2.910 63.403 90.602 4
BPNN0.057 50.181 21 130.530 0
LSTM1.971 44.581 68 519.360 0

新窗口打开| 下载CSV


表3   仿真数据3不同预测方法的预测情况

Table 3  Simulation data 3 prediction of different methods

算法ADE/mmFDE/mm耗时/ms
IPCFTPA0.323 31.150 61.837 3
PCFTPA0.558 31.827 80.754 8
KF9.896 511.630.786 9
BPNN1.107 43.3121 460.910 0
LSTM6.096 712.9883 656.130 0

新窗口打开| 下载CSV


表4   真实数据1不同方法预测情况

Table 4  Real data 1 prediction of different methods

算法ADE/mmFDE/mm耗时/ms
IPCFTPA0.864 72.167 33.833 2
PCFTPA1.539 54.294 90.750 8
KF3.384 13.899 30.889 5
BPNN1.228 12.722 11 450.820 0
LSTM4.968 110.3246 919.180 0

新窗口打开| 下载CSV


表 2表 3表 4可知, 本文算法的ADE、FDE均小于PCFTPA、KF、BPNN、LSTM。从预测耗时上看, 改进的曲线拟合轨迹预测算法相较于BPNN和LSTM具有明显优势, 相较于PCFTPA略有增大。

表 5统计了不同数据IPCFTPA相较于PCFTPA的ADE、FDE降低比例情况。其中, KADE为ADE降低比例, KFDE为FDE降低比例。

表5   不同数据IPCFTPA相较于PCFTPA的ADE、FDE降低比例

Table 5  ADE and FDE decreasement rate of IPCFTPA of different data compared with PCFTPA %

数据KADEKFDE
仿真数据159.7048.07
仿真数据246.3432.65
仿真数据342.0937.05
仿真数据均值49.3839.26
真实数据143.8349.54
真实数据232.9926.78
真实数据331.6425.64
真实数据均值36.1533.99
总均值42.7736.62

新窗口打开| 下载CSV


表 5可知, 真实数据的ADE、FDE降低比例较仿真数据低, 主要是因为真实数据表示的轨迹, 虽经过光滑处理, 但依然不如仿真数据光滑, 并且真实数据有较多的弯曲部分, 使得整条轨迹的曲率变化较大。由表 5可知, 本文算法相较于PCFTPA, 对于仿真数据, ADE平均降低了49.38%, FDE平均降低了39.26%。对于真实数据, ADE平均降低了36.15%, FDE平均降低了33.99%,充分说明了本文算法的可行性和有效性。在运动目标轨迹预测中, 对于对高实时性、高准确率有较高要求的场合, 本文算法具有一定的参考价值。

4 结束语

本文提出基于PCFTPA的算法IPCFTPA。改进之处主要有3点: ①通过CTTDA确定曲率、挠率阈值, 并根据该阈值识别预测误差较大的轨迹部位; ②通过IRPA对预测误差较大的部位进行插值滚动预测; ③通过DEPVUA对预测值进行更新, 建立相邻两次预测中时间及空间上的关系, 提高预测准确率。实验结果表明, IPCFTPA相较于PCFTPA, ADE平均下降了42.77%, FDE平均下降了36.62%, 单次平均预测时间略有增加; 与LSTM、BPNN轨迹预测算法相比, IPCFTPA在单次预测耗时上具有非常大的优势; 与KF、LSTM、BPNN相比, IPCFTPA预测准确率具有明显的优势。另外, 在多项式曲线拟合用于轨迹预测的算法中, 多项式系数也呈现出一定的规律。下一步将研究多项式系数的变化规律, 进一步提高轨迹预测的准确性, 以充分发挥多项式曲线拟合在轨迹预测中的优势。

参考文献

HAO X , HUYNH D Q , REYNOLDS M .

PoPPL: pedestrian trajectory prediction by LSTM with automatic route class clustering

[J]. IEEE Trans. on Neural Networks and Learning Systems, 2021, 32 (1): 77- 90.

DOI:10.1109/TNNLS.2020.2975837      [本文引用: 1]

YOON Y , KIM T , LEE H , et al.

Road-aware trajectory prediction for autonomous driving on highways

[J]. Sensors, 2020, 20 (17): 4703.

DOI:10.3390/s20174703      [本文引用: 1]

WU Z Y, CAO Z Q, YU Y Y, et al. A multi-robot cooperative hunting approach based on the dynamic prediction of target motion[C]//Proc. of the IEEE International Conference on Robo-tics and Biomimetics, 2017: 587-592.

[本文引用: 1]

DUAN Y, HUANG X, YU X. Multi-robot dynamic virtual potential point hunting strategy based on FIS[C]//Proc. of the IEEE Chinese Guidance, Navigation and Control Conference, 2016: 332-335.

[本文引用: 1]

刘文, 胡琨林, 李岩, .

移动目标轨迹预测方法研究综述

[J]. 智能科学与技术学报, 2021, 3 (2): 149- 160.

[本文引用: 1]

LIU W , HU K L , LI Y , et al.

A review of prediction methods for moving target trajectories

[J]. Chinese Journal of Intelligent Science and Technology, 2021, 3 (2): 149- 160.

[本文引用: 1]

LEON F , GAVRILESCU M .

A review of tracking and trajectory prediction methods for autonomous driving

[J]. Mathematics, 2021, 9 (6): 660.

DOI:10.3390/math9060660      [本文引用: 1]

胡俊, 朱庆保.

基于动态预测目标轨迹和围捕点的多机器人围捕算法

[J]. 电子学报, 2011, 39 (11): 2480- 2485.

[本文引用: 1]

HU J , ZHU Q B .

A multi-robot hunting algorithm based on dynamic prediction for trajectory of the moving target and hunting points

[J]. Acta Electronica Sinica, 2011, 39 (11): 2480- 2485.

[本文引用: 1]

张强, 张振标.

基于曲线拟合的机动目标轨迹预测算法研究

[J]. 信息化研究, 2018, 44 (6): 12-15, 30.

[本文引用: 2]

ZHANG Q , ZHANG Z B .

Research of maneuvering target tra-jectory prediction based on curve fitting

[J]. Informatization Research, 2018, 44 (6): 12-15, 30.

[本文引用: 2]

李世杰, 雷虎民, 周池军, .

基于控制变量估计的高超声速再入滑翔目标轨迹预测算法

[J]. 系统工程与电子技术, 2020, 42 (10): 2320- 2327.

URL     [本文引用: 1]

LI S J , LEI H M , ZHOU C J , et al.

Trajectory prediction algorithm for hypersonic reentry gliding target based on control variables estimation

[J]. Systems Engineering and Electronics, 2020, 42 (10): 2320- 2327.

URL     [本文引用: 1]

CAO X , XU X Y .

Hunting algorithm for multi-AUV based on dynamic prediction of target trajectory in 3D underwater environment

[J]. IEEE Access, 2020, 8, 138529- 138538.

DOI:10.1109/ACCESS.2020.3013032      [本文引用: 1]

WANG Z J, NIE Z Q, SHENG G. Dynamic position predicting of underactuated surface vessel with unscented Kalman filter[C]// Proc. of the 2018 Chinese Automation Congress, 2018: 4030-4033.

[本文引用: 1]

GUO G , ZHAO S J .

3D multi-object tracking with adaptive cubature Kalman filter for autonomous driving

[J]. IEEE Trans. on Intelligent Vehicles, 2023, 8 (1): 512- 519.

DOI:10.1109/TIV.2022.3158419     

MOHAMMAD Z , HOSSEIN G Y , MEHRAN Y .

Real-time object tracking based on an adaptive transition model and extended Kalman filter to handle full occlusion

[J]. The Visual Computer, 2020, 36 (4): 701- 715.

DOI:10.1007/s00371-019-01652-3     

ABBAS M T , JIBRAN M A , AFAQ M , et al.

An adaptive approach to vehicle trajectory prediction using multimodel Kalman filter

[J]. IEEE Trans. on Emerging Telecommunications Technologies, 2020, 31 (5): 3734.

DOI:10.1002/ett.3734      [本文引用: 1]

THIPPHAVONG D P , SCHULTZ C A , LEE A G , et al.

Adaptive algorithm to improve trajectory prediction accuracy of climbing aircraft

[J]. Journal of Guidance, Control, and Dynamics, 2013, 36 (1): 15- 24.

DOI:10.2514/1.58508      [本文引用: 1]

HAN X , TIAN C .

Estimation of buoy drifting based on adaptive parameter-varying time scale Kalman filter

[J]. Journal of Control and Decision, 2021, 8 (3): 353- 362.

DOI:10.1080/23307706.2020.1808863      [本文引用: 1]

WU Z J , TIAN S , MA L .

A 4D trajectory prediction model based on the BP neural network

[J]. Journal of Intelligent Systems, 2019, 29 (1): 1545- 1557.

DOI:10.1515/jisys-2019-0077      [本文引用: 1]

CHEN K , SONG X , REN X X .

Pedestrian trajectory prediction in heterogeneous traffic using pose keypoints-based convolutional encoder-decoder network

[J]. IEEE Trans. on Circuits and Systems for Video Technology, 2021, 31 (5): 1764- 1775.

DOI:10.1109/TCSVT.2020.3013254     

LI S, ZHI Y, MELLADO S, et al. 3DOF pedestrian trajectory prediction learned from long-term autonomous mobile robot deployment data[C]//Proc. of the IEEE International Conference on Robotics & Automation, 2018: 5942-5948.

ALTCHE F, FORTELLE A. A LSTM network for highway trajectory prediction[C]//Proc. of the IEEE 20th International Conference on Intelligent Transportation Systems, 2017: 353-359.

ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 961-971.

[本文引用: 2]

ZHANG Y H , WEI W , YU D , et al.

A tracking and predicting scheme for ping pong robot

[J]. Journal of Zhejiang University-Science C(Computers & Electronics), 2011, 12 (2): 110- 115.

[本文引用: 1]

AKABANE R , KATO Y .

Pedestrian trajectory prediction based on transfer learning for human-following mobile robots

[J]. IEEE Access, 2021, 9, 126172- 126185.

DOI:10.1109/ACCESS.2021.3111917      [本文引用: 1]

YANG J , SUN X , WANG R G , et al.

PTPGC: pedestrian trajectory prediction by graph attention network with Conv- LSTM

[J]. Robotics and Autonomous Systems, 2022, 148, 103931.

DOI:10.1016/j.robot.2021.103931      [本文引用: 2]

SHANNON C .

A symbolic analysis of relay and switching circuits

[J]. Electrical Engineering, 1938, 57 (12): 713- 723.

DOI:10.1109/EE.1938.6431064      [本文引用: 1]

POSTNIKOV A, GAMAYUNOV A, FERRER G. Transformer based trajectory prediction[C]//Proc. of the 35th Conference on Neural Information Processing Systems, 2021.

[本文引用: 1]

ZHU Z R , WU J W , YAN R , et al.

Cutting force prediction considering tool path curvature and torsion based on screw theory

[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114 (5/6): 1601- 1621.

[本文引用: 1]

PAGANI L , SCOTT P .

Curvature based sampling of curves and surfaces

[J]. Computer Aided Geometric Design, 2018, 59, 32- 48.

DOI:10.1016/j.cagd.2017.11.004     

LU L Z , ZHAO S Q .

High-quality point sampling for B-spline fitting of parametric curves with feature recognition

[J]. Journal of Computational and Applied Mathematics, 2019, 345, 286- 294.

DOI:10.1016/j.cam.2018.04.008      [本文引用: 1]

YE X Y , ZHU S P , CHEN S .

Research on model predictive trajectory following control of automatic vehicle considering prediction error

[J]. International Journal of Wireless and Mobile Computing: IJWMC, 2021, 21 (1): 52- 58.

DOI:10.1504/IJWMC.2021.119062      [本文引用: 1]

VICTOR P , TOMOYUKI M .

Smooth curve fitting of mobile robot trajectories using differential evolution

[J]. IEEE Access, 2020, 8, 82855- 82866.

DOI:10.1109/ACCESS.2020.2991003      [本文引用: 1]

YAN W, SUNA Y. Three-dimensional curve fitting based on cubic B-spline interpolation curve[C]//Proc. of the 7th International Congress on Image and Signal Processing, 2014: 765-770.

ZHENG F, FANG F, MA X D. Trajectory sampling and fitting restoration based on machine vision for robot fast teaching[C]// Proc. of the 15th IEEE Conference on Industrial Electronics and Applications, 2020: 604-609.

[本文引用: 1]

/