

系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (2): 616-630.doi: 10.12305/j.issn.1001-506X.2024.02.25
• 系统工程 • 上一篇
丛林虎1,*, 陈宇奇2, 陈黎明1, 陈育良1, 王朝3
收稿日期:2021-08-07
									
				
									
				
									
				
											出版日期:2024-01-25
									
				
											发布日期:2024-02-06
									
			通讯作者:
					丛林虎
												作者简介:丛林虎(1986—), 男, 讲师, 博士, 主要研究方向为装备综合保障基金资助:Linhu CONG1,*, Yuqi CHEN2, Liming CHEN1, Yuliang CHEN1, Chao WANG3
Received:2021-08-07
									
				
									
				
									
				
											Online:2024-01-25
									
				
											Published:2024-02-06
									
			Contact:
					Linhu CONG   
												摘要:
针对当前装备体系(system of systems, SoS)任务建模研究深入程度不足问题, 提出装备SoS使命任务的概念模型和描述模型, 在此基础上, 首先对各层级任务的任务线程进行分析与规划, 改进传统Petri网, 提出一种基于层次确定与随机Petri网(hierarchical deterministic and stochastic Petri nets, HDSPN)的装备SoS任务线程建模方法, 构建面向多层级使命任务的装备SoS任务线程模型。然后, 结合基于可达性分析算法(reachability analysis algorithm, RAA)的装备SoS总体任务成功性仿真评估算法, 启动仿真模型运行, 实现对装备SoS总体任务成功性的有效评估, 并通过案例分析, 验证了模型的适用性。
中图分类号:
丛林虎, 陈宇奇, 陈黎明, 陈育良, 王朝. 基于多层级使命任务线程的总体任务成功性评估[J]. 系统工程与电子技术, 2024, 46(2): 616-630.
Linhu CONG, Yuqi CHEN, Liming CHEN, Yuliang CHEN, Chao WANG. Overall evaluation of mission success of SoS based on HDSPN[J]. Systems Engineering and Electronics, 2024, 46(2): 616-630.
表2
作战使命分解结果"
| 行动名称 | 持续时间/h | 行动内容 | 装备系统 | 作战能力 | 行动要求 | 
| Operation1 | 1.5 | 进行进攻准备工作, 对敌目标进行搜索探测, 收集相关情报并进行处理, 制定作战计划并下达 | S1; S2; S3 | 情报搜索能力C11; 指挥决策能力C21 | D1O1=90; D2O1=80 | 
| Operation2 | 2.5 | 对敌目标进行探测追踪并实施火力打击, 摧毁敌西侧作战力量 | S2; S4; S5 | 警戒侦察能力C12; 火力毁伤能力C22; 快速机动能力C32 | D1O2=80;D2O2=75; D3O2=80 | 
| Operation3 | 2.5 | 对敌目标进行探测追踪并实施火力打击, 摧毁敌东侧作战力量 | S3(S2); S6; S7 | 警戒侦察能力C13; 火力毁伤能力C23; 快速机动能力C33 | D1O3=85;D2O3=90; D3O3=80 | 
| Operation4 | 3.0 | 对敌残余作战力量进行探测追踪并实施火力摧毁 | S2; S4; S5 | 警戒侦察能力C14; 火力毁伤能力C24; 快速机动能力C34 | D1O4=80;D2O4=90; D3O4=60 | 
| Operation5 | 3.0 | 对敌残余作战力量进行探测追踪并实施火力摧毁 | S3; S6; S7 | 警戒侦察能力C15; 火力毁伤能力C25; 快速机动能力C35 | D1O5=80;D2O5=90; D3O5=60 | 
表3
作战行动分解结果"
| 作战任务 | 任务时间/h | 执行功能模块 | 任务要求 | 
| Task11 | 0~1 | F11 | D1T11=80 | 
| F21 | D2T11=90 | ||
| Task21 | 0~1 | F31 | D1T21=80 | 
| F42 | D2T21=80 | ||
| Task31 | 1~1.5 | F12 | D1T31=90 | 
| Task41 | 1~1.5 | F42 | D1T41=90 | 
| F33 | D2T41=90 | ||
| Task12 | 1.5~4 | F14 | D1T12=75 | 
| F24 | D2T12=70 | ||
| F34 | D3T12=100 | ||
| Task22 | 1.5~4 | F15 | D1T22=75 | 
| F25 | D2T22=70 | ||
| F35 | D3T22=100 | ||
| Task32 | 1.5~4 | F22 | D1T32=60 | 
| F32 | D2T32=80 | ||
| F42 | D3T32=60 | ||
| Task13 | 1.5~4 | F16 | D1T13=55 | 
| F26 | D2T13=50 | ||
| F36 | D3T13=80 | ||
| Task23 | 1.5~4 | F17 | D1T23=55 | 
| F27 | D2T23=50 | ||
| F37 | D3T23=80 | ||
| Task33 | 1.5~4 | F13(F22) | D1T33=60 | 
| F23(F32) | D2T33=100 | ||
| F33(F42) | D3T33=75 | ||
| Task14 | 4~7 | F14 | DD1T14=50 | 
| F24 | DD2T14=60 | ||
| F34 | DD3T14=80 | ||
| Task24 | 4~7 | F15 | DD1T24=50 | 
| F25 | DD2T24=60 | ||
| F35 | D3T24=80 | ||
| Task34 | 4~7 | F22 | DD1T34=75 | 
| F32 | DD2T34=90 | ||
| F42 | DD3T34=60 | ||
| Task15 | 4~7 | F16 | D1T15=50 | 
| F26 | D2T15=60 | ||
| F36 | D3T15=80 | ||
| Task25 | 4~7 | F17 | D1T25=50 | 
| F27 | D2T25=60 | ||
| F37 | D3T25=80 | ||
| Task35 | 4~7 | F13 | D1T35=75 | 
| F23 | D2T35=90 | ||
| F33 | D3T35=60 | 
表4
功能模块运行性能水平及相应退化参数取值"
| 装备系统 | 功能模块 | 运行性能水平 | 瞬时状态转移强度(×10-4)/h | |||||||||
| gF1 | gF2 | gF3 | gF4 | λF1, 2 | λF1, 3 | λF1, 4 | λF2, 3 | λF2, 4 | λF3, 4 | |||
| S1 | F11 | 100 | 75 | 50 | 0 | 5.52 | 5.32 | 5.45 | 5.65 | 6.05 | 5.68 | |
| F21 | 100 | 60 | 0 | - | 6.35 | 5.80 | - | 6.50 | - | - | ||
| F31 | 100 | 70 | 0 | - | 5.21 | 4.53 | - | 5.53 | - | - | ||
| S2 | F12 | 100 | 0 | - | - | 1.96 | - | - | - | - | - | |
| F22 | 100 | 75 | 0 | - | 6.52 | 5.81 | - | 6.87 | - | - | ||
| F32 | 100 | 50 | 0 | - | 6.45 | 6.25 | - | 6.95 | - | - | ||
| F42 | 100 | 60 | 0 | - | 6.85 | 6.65 | - | 7.15 | - | - | ||
| S3 | F13 | 100 | 65 | 0 | - | 6.45 | 5.25 | - | 6.75 | - | - | |
| F23 | 100 | 0 | - | - | 7.25 | - | - | - | - | - | ||
| F33 | 100 | 80 | 0 | - | 5.25 | 4.85 | - | 6.12 | - | - | ||
| S4 | F14 | 100 | 80 | 50 | 0 | 6.23 | 6.42 | 6.55 | 5.96 | 5.87 | 6.15 | |
| F24 | 100 | 65 | 0 | - | 6.42 | 5.95 | - | 6.75 | - | - | ||
| F34 | 100 | 0 | - | - | 4.52 | - | - | - | - | - | ||
| S5 | F15 | 100 | 80 | 50 | 0 | 6.23 | 6.42 | 6.55 | 5.96 | 5.87 | 6.15 | |
| F25 | 100 | 65 | 0 | - | 6.42 | 5.95 | - | 6.75 | - | - | ||
| F35 | 100 | 0 | - | - | 4.52 | - | - | - | - | - | ||
| S6 | F16 | 100 | 55 | 0 | - | 6.12 | 5.85 | - | 6.32 | - | - | |
| F26 | 100 | 60 | 0 | - | 5.98 | 5.72 | - | 6.65 | - | - | ||
| F36 | 100 | 0 | - | - | 5.85 | - | - | - | - | - | ||
| S7 | F17 | 100 | 55 | 0 | - | 6.12 | 5.85 | - | 6.32 | - | - | |
| F27 | 100 | 60 | 0 | - | 5.98 | 5.72 | - | 6.65 | - | - | ||
| F37 | 100 | 0 | - | - | 5.85 | - | - | - | - | - | ||
| 1 | GAO Y , TIAN Y L , LIU H , et al. Entropy based inverse design of aircraft mission success space in system-of-systems confrontation[J]. Chinese Journal of Aeronautics, 2021, (12): 99- 109. | 
| 2 |  
											  魏东涛, 刘晓东, 李鹏, 等.  基于节点重要度与改进信息熵的装备体系效能评估方法研究[J]. 系统工程与电子技术, 2021, 43 (12): 3614- 3623. 
											 												 doi: 10.12305/j.issn.1001-506X.2021.12.24  | 
										
|  
											   WEI D T ,  LIU X D ,  LI P , et al.  Research on effectiveness eva-luation method of equipment system based on node importance and improved information entropy[J]. Systems Engineering and Electronics, 2021, 43 (12): 3614- 3623. 
											 												 doi: 10.12305/j.issn.1001-506X.2021.12.24  | 
										|
| 3 | 罗承昆, 陈云翔, 王莉莉, 等. 基于作战环和改进信息熵的体系效能评估方法[J]. 系统工程与电子技术, 2019, 41 (1): 73- 80. | 
| LUO C K , CHEN Y X , WANG L L , et al. System effectiveness evaluation method based on combat loop and improved information entropy[J]. Systems Engineering and Electronics, 2019, 41 (1): 73- 80. | |
| 4 | 梁家林, 熊伟. 基于作战环的武器体系能力评估方法[J]. 系统工程与电子技术, 2019, 41 (8): 1810- 1819. | 
| LIANG J L , XIONG W . Weapon system capability evaluation method based on combat ring[J]. Systems Engineering and Electronics, 2019, 41 (8): 1810- 1819. | |
| 5 | LUBAS D G. Department of defense system of systems reliability challenges[C]//Proc. of the Annual Reliability and Maintainability Symposium, 2017. | 
| 6 | SILVA E, BATISTA T V, OQUENDO F. A mission-oriented approach for designing system-of-systems[C]//Proc. of the 10th System of Systems Engineering Conference, 2015: 345-351. | 
| 7 | LI J C, YANG K W, FU C X, et al. An operational efficiency eva-luation method for weapon system-of-systems combat networks based on operation loop[C]//Proc. of the 9th International Conference on System of Systems Engineering, 2014: 219-233. | 
| 8 | CHI Y, LI J C, YANG K W, et al. An equipment offering degree evaluation method for weapon system-of-systems combat network based on operation loop[C]//Proc. of the 22nd International Conference on Industrial Engineering and Engineering Management, 2015: 477-488. | 
| 9 | 陈宇奇, 徐廷学, 郝建平, 等. 基于FDN的装备体系任务能力依赖性分析[J]. 系统工程与电子技术, 2021, 43 (6): 1721- 1728. | 
| CHEN Y Q , XU T X , HAO J P , et al. Task capability dependency analysis of weapon system of systems based on FDN[J]. Systems Engineering and Electronics, 2021, 43 (6): 1721- 1728. | |
| 10 | GAGLIARDI M, WOOD B, MORROW T. Introduction to the mission thread workshop[R]. Pittsburgh: Software Engineering Institute, 2013. | 
| 11 | JAIN P P, PRIDEMORE B. Case study: net-centric mission threads modeling and analysis using BPMN[C]//Proc. of the IEEE International Symposium on Collaborative Technologies and Systems, 2008. | 
| 12 | GAGLIARDI M, WOOD B. Mission thread workshop: lessons learned[R]. Pittsburgh: Software Engineering Institute, 2012. | 
| 13 | Chief Information Officer. DoD architecture framework 2.0[R]. Washington: Department of Defense, 2009. | 
| 14 | Ministry of Defense. MoD architectural framework viewpoint overview version 1.0[R]. U.K. : Ministry of Defense, 2005. | 
| 15 | 刘斌. 基于DoDAF的装备体系的任务可靠性建模方法研究[D]. 长沙: 国防科技大学, 2015. | 
| LIU B. Modeling method research of mission reliability of equipment system of systems based on DoDAF[D]. Changsha: National University of Defense Technology, 2015. | |
| 16 | ZHAO Y P, ZHENG H Z. Modeling and simulation for equipment support system based on IDEF method[C]//Proc. of the International Conference on Computer Application and System Modeling, 2010. | 
| 17 | DAMM W, VINCENTELLI A S. A conceptual model of system of systems[C]//Proc. of the 2nd International Workshop on the Swarm at the Edge of the Cloud-SWEC, 2015: 19-27. | 
| 18 |  
											   SOHAG K ,  MOHAMMAD Y ,  IGNACIO A J , et al.  Uncertainty-aware dynamic reliability analysis framework for complex systems[J]. IEEE Access, 2018, 6, 29499- 29515. 
											 												 doi: 10.1109/ACCESS.2018.2843166  | 
										
| 19 | 袁崇义. Petri网原理与应用[M]. 北京: 电子工业出版社, 2005. | 
| YUAN C Y . Principle and application of Petri net[M]. Beijing: Publishing House of Electronics Industry, 2005. | |
| 20 | 苏永定. 装备系统测试性需求分析技术研究[D]. 长沙: 国防科技大学, 2011. | 
| SU Y D . Research on testability requirement analysis for equipment[M]. Changsha: National University of Defense Techno-logy, 2011. | |
| 21 |  
											   RAHNAMAY N M ,  HAYAT M .  Cascading failures in interdependent infrastructures: an interdependent Markov-Chain approach[J]. IEEE Trans.on Smart Grid, 2016, 7 (4): 1997- 2006. 
											 												 doi: 10.1109/TSG.2016.2539823  | 
										
| 22 |  
											   WANG F ,  TIAN L X ,  DU R J , et al.  The robustness of interdependent weighted networks[J]. Physica A: Statistical Mechanics and its Applications, 2018, 508, 675- 680. 
											 												 doi: 10.1016/j.physa.2018.05.110  | 
										
| 23 | GAO Y L , CHEN S M , NIE S , et al. Robustness analysis of interdependent networks under multiple-attacking strategies[J]. Physica A: Statistical Mechanics and its Applications, 2017, 496, 495- 504. | 
| 24 | 周伟, 朱晓, 冉琰, 等. 考虑性能依赖的元动作单元多态可靠性分析[J]. 哈尔滨工业大学学报, 2020, 52 (1): 62- 68. | 
| ZHOU W , ZHU X , RAN Y , et al. Reliability analysis method of meta-action unit in multi-state system considering perfor-mance dependence[J]. Journal of Harbin Institute of Technology, 2020, 52 (1): 62- 68. | |
| 25 | 王超, 郭基联, 沈安慰. 基于不对称依赖的相依网络级联故障分析[J]. 系统工程与电子技术, 2020, 42 (5): 1093- 1101. | 
| WANG C , GUO J L , SHEN A W . Analysis of cascading fai-lures of interdependent networks based on asymmetric depen-dency[J]. Systems Engineering and Electronics, 2020, 42 (5): 1093- 1101. | |
| 26 | 胡启国, 高展. 多元参数退化的系统相关竞争失效可靠性评估方法[J]. 西北工业大学学报, 2019, 37 (6): 1191- 1199. | 
| HU Q G , GAO Z . A reliability evaluation method for system's dependent competition failure and multi-parameter degradation failure[J]. Journal of Northwestern Polytechnical University, 2019, 37 (6): 1191- 1199. | |
| 27 | GARVEY P R, PINTO C A. Introduction to functional dependency network analysis[C]//Proc. of the 2nd International Symposium on Engineering Systems, 2009. | 
| 28 | GUARINIELLO C. Supporting space systems design via systems dependency analysis methodology[D]. West Lafayette: Purdue University, 2016. | 
| 29 | 陈宇奇, 徐廷学, 李志强, 等. 基于证据GO法的复杂多态系统动态可靠性分析[J]. 系统工程与电子技术, 2020, 42 (1): 230- 237. | 
| CHEN Y Q , XU T X , LI Z Q , et al. Dynamic reliability analysis of complex multi-state system based on evidence GO method[J]. Systems Engineering and Electronics, 2020, 42 (1): 230- 237. | |
| 30 |  
											  江秀红, 段富海, 胡爱玲.  一种新型GO法操作符及其在多态系统中的应用[J]. 兵工学报, 2019, 40 (4): 857- 864. 
											 												 doi: 10.3969/j.issn.1000-1093.2019.04.021  | 
										
|  
											   JIANG X H ,  DUAN F H ,  HU A L .  A new GO operator and its application in multi-state system[J]. Acta Armamentarii, 2019, 40 (4): 857- 864. 
											 												 doi: 10.3969/j.issn.1000-1093.2019.04.021  | 
										|
| 31 | 夏侯唐凡. 考虑认知不确定性的多状态系统重要度分析和可靠性评估方法研究[D]. 成都: 电子科技大学, 2018. | 
| XIAHOU T F. Importance measures and reliability assessment of multi-state systems under epistemic uncertainty[D]. Chengdu: University of Electronic Science and Technology of China, 2018. | |
| 32 | 翟禹尧, 史贤俊, 韩露, 等. 基于广义随机有色Petri网的测试性建模方法[J]. 兵工学报, 2021, 42 (3): 655- 662. | 
| ZHAI Y Y , SHI X J , HAN L , et al. A testability modeling method based on colored generalized stochastic Petri nets[J]. Acta Armamentarii, 2021, 42 (3): 655- 662. | |
| 33 | United States Government US Army . Manual for the operation of the joint capabilities integration and development system-JCIDS[M]. Charleston: Create Space Independent Publishing Platform, 2014. | 
| [1] | 曹嘉平, 欧萌歆, 李易珊, 姜江, 李际超. 岛礁防空电子对抗装备体系构建与效能评估[J]. 系统工程与电子技术, 2023, 45(9): 2784-2792. | 
| [2] | 任浩亮, 张建超, 程会川. 基于SysML的武器装备体系能力需求建模分析方法[J]. 系统工程与电子技术, 2023, 45(9): 2843-2851. | 
| [3] | 徐任杰, 宫琳, 谢剑, 刘欣, 杨克巍. 基于装备体系韧性的作战网络链路重要度评估及恢复策略[J]. 系统工程与电子技术, 2023, 45(1): 139-147. | 
| [4] | 孔德鹏, 马溢清, 郑保华, 王琦, 张志强, 赵珍强. 面向不确定多任务场景的海上联合作战装备体系贡献率评估方法[J]. 系统工程与电子技术, 2022, 44(12): 3775-3782. | 
| [5] | 蒋铁军, 于淳, 周成杰. 考虑期望体系效能衰减的舰艇编队等级修理计划优化[J]. 系统工程与电子技术, 2022, 44(11): 3571-3578. | 
| [6] | 陈启宏, 赵青松, 邱薇, 陈甲. 基于动态博弈的武器装备体系发展规划论证方法[J]. 系统工程与电子技术, 2022, 44(10): 3124-3133. | 
| [7] | 杜敏, 程中华, 董恩志. 陆军防空旅装备体系贡献率评估理论研究[J]. 系统工程与电子技术, 2022, 44(1): 209-217. | 
| [8] | 陈志伟, 王靖, 谷长超, 章健淳, 钟季龙. 考虑动态重构的装备体系可用性及弹性分析[J]. 系统工程与电子技术, 2021, 43(8): 2347-2354. | 
| [9] | 陈宇奇, 徐廷学, 郝建平, 逯程, 李志强. 基于FDN的装备体系任务能力依赖性分析[J]. 系统工程与电子技术, 2021, 43(6): 1721-1728. | 
| [10] | 潘星, 张振宇, 张艳梅, 王冉冉. 基于Sobol敏感性分析的装备体系保障效能评估[J]. 系统工程与电子技术, 2021, 43(2): 390-398. | 
| [11] | 周鑫, 王维平, 朱一凡, 王涛, 井田. 基于顺次分配机制的无人装备体系架构方案空间搜索方法[J]. 系统工程与电子技术, 2021, 43(11): 3211-3219. | 
| [12] | 潘星, 左督军, 张跃东. 基于系统动力学的装备体系贡献率评估方法[J]. 系统工程与电子技术, 2021, 43(1): 112-120. | 
| [13] | 马钧文, 张安, 高飞, 毕文豪. 基于置信规则推理的武器装备体系贡献度评估[J]. 系统工程与电子技术, 2020, 42(7): 1519-1526. | 
| [14] | 刘鹏, 赵丹玲, 谭跃进, 杨克巍, 豆亚杰. 面向多任务的武器装备体系贡献度评估方法[J]. 系统工程与电子技术, 2019, 41(8): 1763-1770. | 
| [15] | 游雅倩, 姜江, 孙建彬, 赵丹玲, 杨克巍. 基于证据网络的装备体系贡献率评估方法研究[J]. 系统工程与电子技术, 2019, 41(8): 1780-1788. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||