1 |
SAFAAI D , SIGERU O , HIROSHI O , et al. Application of a hybrid genetic algorithm to ship maintenance scheduling[J]. IFAC Proceedings Volumes, 1997, 30 (25): 65- 70.
doi: 10.1016/S1474-6670(17)41302-4
|
2 |
SAFAAI D , SIGERU O , HIROSHI O , et al. Ship maintenance scheduling by genetic algorithm and constraint-based reasoning[J]. European Journal of Operational Research, 1999, 112 (3): 489- 502.
doi: 10.1016/S0377-2217(97)00399-8
|
3 |
顾磊, 钱正芳, 范英, 等. 舰船装备视情维修间隔模型研究[J]. 华中科技大学学报(自然科学版), 2003, 31 (6): 103- 105.
doi: 10.3321/j.issn:1671-4512.2003.06.035
|
|
GU L , QIAN Z F , FAN Y , et al. The maintenance interval model for vessel equipments depending on situation[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2003, 31 (6): 103- 105.
doi: 10.3321/j.issn:1671-4512.2003.06.035
|
4 |
何春雨, 金家善, 孙丰瑞. 基于LINGO软件的舰船装备修理级别优化分析[J]. 上海交通大学学报, 2011, 45 (1): 78- 82.
|
|
HE C Y , JIN J S , SUN F R . Optimization model of ship's equipment lora based on LINGO[J]. Journal of Shanghai Jiaotong University, 2011, 45 (1): 78- 82.
|
5 |
刘佳, 杨建军, 谢宗仁. 面向任务的舰船装备预防性维修规划模型研究[J]. 中国造船, 2016, 57 (4): 157- 163.
doi: 10.3969/j.issn.1000-4882.2016.04.018
|
|
LIU J , YANG J J , XIE Z R . Research on task oriented and preventive maintenance planning model for ship equipment[J]. Shipbuilding of China, 2016, 57 (4): 157- 163.
doi: 10.3969/j.issn.1000-4882.2016.04.018
|
6 |
CULLUM J , BINNS J , LONSDALE M , et al. Risk-based maintenance scheduling with application to naval vessels and ships[J]. Ocean Engineering, 2018, 148 (15): 476- 485.
|
7 |
AYIK M. Exploiting consecutive one's structure in the set partitioning problem[D]. California: Naval Postgraduate School, 2000.
|
8 |
AYIK M. Optimal long-term aircraft carrier deployment planning with synchronous depot level maintenance scheduling[D]. California: Naval Postgraduate School, 1998.
|
9 |
HALL M H. The impact of long term aircraft carrier maintenance scheduling on the fleet readiness plan[D]. California: Naval Postgraduate School, 2004.
|
10 |
YARDLEY R J, KALLIMANI J G, SCHANK J F, et al. Increasing aircraft carrier forward presence: changing the length of the maintenance cycle[R]. Santa Monica, CA: RAND Corporation, 2008.
|
11 |
YARDLEY R J, SCHANK J F, KALLIMANI J G, et al. A methodology for estimating the effect of carrier operational cycles on the maintenance industrial base[R]. Santa Monica, CA: RAND Corporation, 2007.
|
12 |
YARDLEY R J, SCHANK J F, KALLIMANI J G, et al. Aircraft carrier maintenance cycles and their effects[R]. Santa Monica, CA: RAND Corporation, 2008.
|
13 |
Chief of Naval Operation. Representative intervals, durations, maintenance cycles, and repair mandays for depot level maintenance availabilities of U.S. navy ships[R]. Washington U.S. Naval OpNav, 2005.
|
14 |
朱晓军, 张涛, 彭飞, 等. 基于遗传算法的编队条件下舰船修理周期结构优化[J]. 中国舰船研究, 2011, 6 (5): 103- 107.
doi: 10.3969/j.issn.1673-3185.2011.05.021
|
|
ZHU X J , ZHANG T , PENG F , et al. Periodical structure optimization of fleet-wide ship repair by genetic algorithm[J]. Chinese Journal of Ship Research, 2011, 6 (5): 103- 107.
doi: 10.3969/j.issn.1673-3185.2011.05.021
|
15 |
朱晓军, 张涛, 彭飞, 等. 基于编队时间序列的舰船修理结构模型[J]. 系统工程与电子技术, 2012, 34 (11): 2285- 2289.
doi: 10.3969/j.issn.1001-506X.2012.11.17
|
|
ZHU X J , ZHANG T , PENG F , et al. Model of maintenance structure of ship based on time series of fleet[J]. Systems Engineering and Electronics, 2012, 34 (11): 2285- 2289.
doi: 10.3969/j.issn.1001-506X.2012.11.17
|
16 |
张涛, 朱晓军, 彭飞. 编队作战需求下舰船修理周期结构的优化[J]. 中国修船, 2011, 24 (4): 51- 55.
|
|
ZHANG T , ZHU X J , PENG F . Optimization of ship repair cycle structure under formation combat requirements[J]. China Shiprepair, 2011, 24 (4): 51- 55.
|
17 |
李宣池, 胡俊波, 张志华. 考虑修理结构的舰船部署能力仿真[J]. 中国舰船研究, 2015, 10 (5): 123- 128.
|
|
LI X C , HU J B , ZHANG Z H . Simulation analysis of warship deploy ability with maintenance structures involved[J]. Chinese Journal of Ship Research, 2015, 10 (5): 123- 128.
|
18 |
HUANG Q , ZHANG Y S , ZHANG B Z , et al. Emerging SEM equipment system combat capability assessment method[J]. Procedia Computer Science, 2021, 183 (5): 545- 550.
|
19 |
JIANG J Y , LI J C , YANG K W . Weapon system portfolio selection based on structural robustness[J]. Journal of Systems Engineering and Electronics, 2020, 31 (6): 1216- 1229.
|
20 |
NAN Y , YI G X , WANG C H , et al. A novel effectiveness evalua-tion method based on simultaneous probabilistic finite-state machines[J]. IEEE Systems Journal, 2020, 14 (2): 1611- 1622.
doi: 10.1109/JSYST.2019.2956114
|
21 |
柳成彬, 张怀强, 吴磊. 舰船装备维修费用优化研究[J]. 中国修船, 2009, 22 (5): 40- 44.
|
|
LIU C B , ZHANG H Q , WU L . Study on optimization of maintenance cost about warship equipment[J]. China Shiprepair, 2009, 22 (5): 40- 44.
|
22 |
ZHENG R , MAKIS V . Optimal condition-based maintenance with general repair and two dependent failure modes[J]. Computers & Industrial Engineering, 2020, 141 (8): 106322.
|
23 |
周成杰, 蒋铁军. 基于"双控"维修模式的装备维修计划制定方法[J]. 兵器装备工程学报, 2019, 40 (12): 125- 130.
|
|
ZHOU C J , JIANG T J . Equipment maintenance plan formulation method based on "double control" maintenance mode[J]. Journal of Sichuan Ordnance, 2019, 40 (12): 125- 130.
|
24 |
WERNER K M , ZANK H . A revealed reference point for prospect theory[J]. Economic Theory, 2019, 67 (4): 731- 773.
|
25 |
BARBERIS N , JIN L J , WANG B . Prospect theory and stock market anomalies[J]. The Journal of Finance, 2021, 76 (5): 2639- 2687.
|
26 |
CUI Z H , ZHANG J J , WU D , et al. Hybrid many-objective particle swarm optimization algorithm for green coal production problem[J]. Information Sciences, 2020, 518, 256- 271.
|
27 |
WU Y M , SONG Q P . Improved particle swarm optimization algorithm in power system network reconfiguration[J]. Mathematical Problems in Engineering, 2021, 5574501.
|
28 |
SHI Y H, ENGELBRECHT R C. Empirical study of particle swarm optimization[C]//Proc. of the Congress on Evolutionary Computation, 1999, 3: 1945-1950.
|
29 |
SANODIYA R K , MATHEW J , SAHA S , et al. Particle swarm optimization based parameter selection technique for unsupervised discriminant analysis in transfer learning framework[J]. Applied Intelligence, 2020, 50 (3): 3071- 3089.
|
30 |
KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proc. of the 4th IEEE International Conference on Neural Networks, 1995: 1942-1948.
|
31 |
WANG Z J , ZHAN Z H , KWONG S , et al. Adaptive granularity learning distributed particle swarm optimization for large-scale optimization[J]. IEEE Trans.on Cybernetics, 2021, 51 (3): 1175- 1188.
|