1 |
杨克巍, 杨志伟, 谭跃进, 等. 面向体系贡献率的装备体系评估方法研究综述[J]. 系统工程与电子技术, 2019, 41 (2): 311- 321.
|
|
YANG K W , YANG Z W , TAN Y J , et al. Review of the evaluation method of equipment system of systems facing the contribution rate[J]. Systems Engineering and Electronics, 2019, 41 (2): 311- 321.
|
2 |
常雷雷, 张小可, 李孟军. 基于灰靶理论的武器装备体系技术贡献度评估[J]. 兵工自动化, 2010, 29 (10): 13- 15.
doi: 10.3969/j.issn.1006-1576.2010.10.004
|
|
CHANG L L , ZHANG X K , LI M J . Weapon system of system technology contribution evaluation based on grey target theory[J]. Ordnance Industry Automation, 2010, 29 (10): 13- 15.
doi: 10.3969/j.issn.1006-1576.2010.10.004
|
3 |
罗小明, 朱延雷, 何榕. 基于SEM的武器装备作战体系贡献度评估方法[J]. 装备学院学报, 2015, 5, 1- 6.
|
|
LUO X M , ZHU Y L , HE R . SEM-based evaluation method of contribution to system warfighting for weapons and equipment[J]. Journal of Equipment Academy, 2015, 5, 1- 6.
|
4 |
李际超, 杨克巍, 张小可, 等. 基于武器装备体系作战网络模型的装备贡献度评估[J]. 复杂系统与复杂性科学, 2016, 13 (3): 1- 7.
|
|
LI J C , YANG K W , ZHANG X K , et al. Equipment contribution degree evaluation method based on combat network of weapon system-of-systems[J]. Complex Systems and Complexity Science, 2016, 13 (3): 1- 7.
|
5 |
LI J C , ZHAO D L , JIANG J , et al. Capability oriented equipment contribution analysis in temporal combat networks[J]. IEEE Trans.on Systems Man and Cybernetics: Systems, 2018, 12, 1- 9.
|
6 |
金丛镇,黄炎焱,周少平,等.基于效用函数的装备技术对作战系统贡献度评估方法[C]//第四届中国指挥控制大会, 2016: 424-429.
|
|
JIN C Z, HUANG Y Y, ZHOU S P, et al. Evaluation of the contribution rate of equipment technology for combat system based on the utility function[C]//Proc.of the 4th China Conference on Command and Control, 2016: 424-429.
|
7 |
陈文英, 张兵志, 史力晨, 等. 新型智能装甲作战系统体系贡献率评估研究[J]. 兵工学报, 2018, 39 (9): 180- 188.
|
|
CHEN W Y , ZHANG B Z , SHI L C , et al. Research on evaluation of contribution rate of a new intelligent armoured combat system to army weapon system-of-systems[J]. Acta Armamentarii, 2018, 39 (9): 180- 188.
|
8 |
罗承昆, 陈云翔, 张洋铭, 等. 基于混合参数证据网络的装备体系贡献率评估[J]. 兵工学报, 2018, 39 (12): 2489- 2496.
|
|
LUO C K , CHEN Y X , ZHANG Y M , et al. Evaluation of equipment contribution rate to system-of-systems based on hybrid parameter evidential network[J]. Acta Armamentarii, 2018, 39 (12): 2489- 2496.
|
9 |
刘鹏, 赵丹玲, 谭跃进, 等. 面向多任务的武器装备体系贡献度评估方法[J]. 系统工程与电子技术, 2019, 41 (8): 1763- 1770.
|
|
LIU P , ZHAO D L , TAN Y J , et al. Multi-task oriented contribution evaluation of weapon equipment system of systems[J]. Systems Engineering and Electronics, 2019, 41 (8): 1763- 1770.
|
10 |
李怡勇, 李智, 管清波, 等. 武器装备体系贡献度评估刍议与示例[J]. 装备学院学报, 2015, 4, 5- 10.
|
|
LI Y Y , LI Z , GUAN Q B , et al. Discussion and demonstration on contribution evaluation of weapon equipment system[J]. Journal of Equipment Academy, 2015, 4, 5- 10.
|
11 |
王飞, 司光亚. 武器装备体系能力贡献度的解析与度量方法[J]. 军事运筹与系统工程, 2016, 30 (3): 10- 15.
doi: 10.3969/j.issn.1672-8211.2016.03.002
|
|
WANG F , SI G Y . Analysis and measurement of capability contribution of weapon equipment system of systems[J]. Military Operations Research and Systems Engineering, 2016, 30 (3): 10- 15.
doi: 10.3969/j.issn.1672-8211.2016.03.002
|
12 |
Department of defense architecture working group. DoD Architecture Framework 2.0[R]. Washington: Department of Defense, 2009.
|
13 |
FRANCIS M M, COURETAS J P. ADROUNIE V. Enterprise architectures as a catalyst for system-of-systems development: a global ISR perspective[C]//Proc.of the AIAA International Air and Space Symposium and Exposition: the next 100 Years, 2003: 2003-2740.
|
14 |
AMISSAH M, HANDLEY H A H. A process for DoDAF based systems architecting[C]//Proc.of the 10th Annual International Systems Conference, 2016.
|
15 |
YANG J B , LIU J , WANG J , et al. Belief rule-base inference methodology using the evidential reasoning approach-RIMER[J]. IEEE Trans.on Systems Man and Cybernetics-Part A Systems and Humans, 2006, 36 (2): 266- 285.
doi: 10.1109/TSMCA.2005.851270
|
16 |
CHANG L , SUN J , JIANG J , et al. Parameter learning for the belief rule base system in the residual life probability prediction of metalized film capacitor[J]. Knowledge Based Systems, 2015, 73, 69- 80.
doi: 10.1016/j.knosys.2014.09.006
|
17 |
CHANG L , ZHOU Z J , YOU Y , et al. Belief rule based expert system for classification problems with new rule activation and weight calculation procedures[J]. Information Sciences, 2016, 336 (C): 75- 91.
|
18 |
WANG Y M , YANG J B , XU D L . Environmental impact assessment using the evidential reasoning approach[J]. European Journal of Operational Research, 2006, 174 (3): 1885- 1913.
doi: 10.1016/j.ejor.2004.09.059
|
19 |
WANG Y M , YANG L H , FU Y G , et al. Dynamic rule adjustment approach for optimizing belief rule-base expert system[J]. Know-ledge-Based Systems, 2016, 96 (C): 40- 60.
|
20 |
U.S. Air Force . Air force doctrine document 2.0: global integrated intelligence, surveillance & reconnaissance operations[M]. 2012.
|
21 |
周海瑞, 张臻, 刘畅. 美国空军情报监视侦察体系[J]. 指挥信息系统与技术, 2017, 8 (5): 56- 61.
|
|
ZHOU H R , ZHANG Z , LIU C . United States air force intelligence surveillance and reconnaissance system[J]. Command Information System and Technology, 2017, 8 (5): 56- 61.
|
22 |
吴永亮. 美国海军新型情报、监视与侦察飞机发展综述[J]. 飞航导弹, 2012, (5): 70- 76.
|
|
WU Y L . A review of the development of the U.S. Navy's new intelligence, surveillance and reconnaissance aircraft[J]. Aerodynamic Missile Journal, 2012, (5): 70- 76.
|
23 |
CIRIA F. New solutions for naval ISR at airbus military[C]//Proc.of the AIAA Centennial of Naval Aviation Forum "100 Years of Achievement and Progress", 2000.
|