系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (6): 1824-1832.doi: 10.12305/j.issn.1001-506X.2025.06.11

• 传感器与信号处理 • 上一篇    下一篇

基于改进鲸鱼算法和BiGRU的弹道目标HRRP识别方法

王彩云1,*, 贾一帆1, 李晓飞2, 王佳宁2, 吴钇达1   

  1. 1. 南京航空航天大学航天学院, 江苏 南京 211106
    1. 北京电子工程总体研究所, 北京 100854
  • 收稿日期:2024-01-15 出版日期:2025-06-25 发布日期:2025-07-09
  • 通讯作者: 王彩云
  • 作者简介:王彩云 (1975—), 女, 副教授, 博士, 主要研究方向为雷达信号处理、雷达目标检测与识别
    贾一帆 (1999—), 男, 硕士研究生, 主要研究方向为目标探测与识别
    李晓飞 (1984—), 女, 研究员, 博士, 主要研究方向为目标识别、弹道导弹识别
    王佳宁 (1988—), 女, 副研究员, 博士, 主要研究方向为目标识别总体设计
    吴钇达 (1998—), 男, 博士研究生, 主要研究方向为目标检测与识别
  • 基金资助:
    国家自然科学基金(61301211);国家留学基金(201906835017)

Ballistic target HRRP recognition method based on improved whale algorithm and BiGRU

Caiyun WANG1,*, Yifan JIA1, Xiaofei LI2, Jianing WANG2, Yida WU1   

  1. 1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    1. Beijing Institute of Electronic System Engineering, Beijing 100854, China
  • Received:2024-01-15 Online:2025-06-25 Published:2025-07-09
  • Contact: Caiyun WANG

摘要:

针对弹道中段目标高分辨距离像(high resolution range profile, HRRP)的时序特征提取和识别问题, 提出一种基于优化双向门控循环单元(bidirectional gate recurrent unit, BiGRU)的弹道目标识别方法。首先, 将HRRP数据处理为双向序列, 建立BiGRU网络并提取目标HRRP的双向时序特征。然后,使用双权重策略鲸鱼优化算法(double weight strategy whale optimization algorithm, DWSWOA)优化BiGRU模型的参数, 引入的双权重因子在鲸鱼优化算法(whale optimization algorithm, WOA)快速收敛的同时又可有效避免陷入局部最优解。基于优化BiGRU模型的目标HRRP识别实验结果表明, 所提算法相较于其他4种算法, 目标识别准确度更高, 并在噪声数据集上表现出更好的鲁棒性和可靠性。

关键词: 目标识别, 高分辨距离像, 鲸鱼优化算法, 双向门控循环单元, 置信度

Abstract:

To address the problem of time sequence feature extraction and recognition of high resolution range image (HRRP) for ballistic mid-course targets, a ballistic target recognition method based on optimized bidirectional gate recurrent unit (BiGRU) is proposed. Firstly, the HRRP data is processed as a bidirectional sequence, and a BiGRU network is established to extract the temporal features of both directions of HRRP. Secondly, the double weight strategy whale optimization algorithm (DWSWOA). Double weight factors enable higher whale optimization algorithm (WOA) converage velocity and lower probability of falling into local optimal solution, and are used to optimize the parameters of BiGRU. The experimental results of target HRRP recognition based on optimized BiGRU model show that the proposed method exhibits higher accuracy in target recognition, robustness and reliability on noisy data sets than the other four algorithms.

Key words: target recognition, high resolution range profile (HRRP), whale optimization algorithm (WOA), bidirectional gate recurrent unit (BiGRU), confidence

中图分类号: