系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (4): 1016-1023.doi: 10.12305/j.issn.1001-506X.2023.04.10

• 传感器与信号处理 • 上一篇    

基于稀疏分解的海面微动目标识别

黄瀚仪1, 胡仕友2, 郭胜龙2, 李珊君1,*, 舒勤1   

  1. 1. 四川大学电气工程学院, 四川 成都 610000
    2. 北京华航无线电测量研究所, 北京 100013
  • 收稿日期:2022-06-16 出版日期:2023-03-29 发布日期:2023-03-28
  • 通讯作者: 李珊君
  • 作者简介:黄瀚仪(1997—), 男, 硕士研究生, 主要研究方向为雷达杂波抑制、雷达干扰抑制
    胡仕友(1971—), 男, 研究员, 博士,主要研究方向为探测与导引
    郭胜龙(1987—), 男, 研究员, 博士,主要研究方向为目标特性与应用
    李珊君(1967—), 女, 副教授, 博士,主要研究方向为信息与信号处理、电力通信
    舒勤(1958—), 男, 教授, 博士,主要研究方向为信号与信息处理、自适应滤波算法、雷达干扰抑制

Sea surface micro-moving target recognition based on sparse decomposition

Hanyi HUANG1, Shiyou HU2, Shenglong GUO2, Shanjun LI1,*, Qin SHU1   

  1. 1. College of Electrical Engineering, Sichuan University, Chengdu 610000, China
    2. Beijing Huahang Radio Measurement Institute, Beijing 100013, China
  • Received:2022-06-16 Online:2023-03-29 Published:2023-03-28
  • Contact: Shanjun LI

摘要:

海洋环境下杂波较强, 慢速微弱目标的多普勒频率往往会落入海杂波多普勒频宽中, 传统动目标检测方法难以检测出目标回波。为了解决此类问题, 依据海杂波与目标在震荡属性和稀疏特性上的差异, 首先利用可调Q小波变换算法分别获得对应的自适应完备字典。然后,运用形态成分分析算法得到对应的目标稀疏系数和杂波稀疏系数; 再把稀疏系数与各自的自适应字典相乘得到目标分量与杂波分量。最后, 在雷达对海探测数据集下验证了算法的有效性。

关键词: 海杂波, 目标识别, 稀疏分解, 可调Q小波变换

Abstract:

Clutter in the marine environment is strong, and the Doppler frequency of slow and weak targets often falls into the sea clutter Doppler bandwidth. It is difficult for the classic moving target detection methods to detect target echoes. In order to address such problems, this paper uses the tunable Q-factor wavelet transform (TQWT) algorithm to obtain the corresponding self-adaptive complete dictionaries according to the difference between the sea clutter and the target in the oscillation properties and sparse characteristics, and then uses the morphological component analysis (MCA) algorithm to obtain the corresponding target sparse coefficients and clutter sparse coefficients. Then, the target components and clutter components are obtained by multiplying the sparse coefficients with their respective adaptive dictionaries. Finally, the effectiveness of the algorithm is verified by using the radar sea detection dataset.

Key words: sea clutter, target recognition, sparse decomposition, tunable Q-factor wavelet transform (TQWT)

中图分类号: