| 1 |
TURAN E, SPERETTA S, GILL E. Autonomous navigation for deep space small satellites: scientific and technological advances[J]. Acta Astronautica, 2022, 193, 56- 74.
doi: 10.1016/j.actaastro.2021.12.030
|
| 2 |
HAN C, XIONG W, XIONG M H, et al. Support vector regression-based operational effectiveness evaluation approach to reconnaissance satellite system[J]. Journal of Systems Engineering and Electronics, 2023, 34 (6): 1626- 1644.
doi: 10.23919/JSEE.2023.000020
|
| 3 |
MÜLLER L, CHEN K K, MÖLLER G, et al. Real-time navigation solutions of low-cost off-the-shelf GNSS receivers on board the astrocast constellation satellites[J]. Advances in Space Research, 2024, 73 (1): 2- 19.
doi: 10.1016/j.asr.2023.10.001
|
| 4 |
LEE D Y, PARK H, ROMANO M, et al. Development and experimental validation of a multi-algorithmic hybrid attitude determination and control system for a small satellite[J]. Aerospace Science and Technology, 2018, 78, 494- 509.
doi: 10.1016/j.ast.2018.04.040
|
| 5 |
MANSOURI A, ALEM-TABRIZ A. Redundancy allocation optimizing in the satellite attitude determination and control system based on the exact solution algorithm[J]. Communications in Statistics-Theory and Methods, 2024, 53 (4): 1516- 1534.
doi: 10.1080/03610926.2022.2104873
|
| 6 |
王平, 王华, 任元. 基于磁悬浮转子微框架能力的航天器姿态二自由度测控一体化控制方法[J]. 系统工程与电子技术, 2016, 38 (7): 1614- 1622.
doi: 10.3969/j.issn.1001-506X.2016.07.21
|
|
WANG P, WANG H, REN Y. Spacecraft attitude integration method of measurement and control in two degrees of freedom based on micro framework ability of magnetically suspended rotor[J]. Systems Engineering and Electronics, 2016, 38 (7): 1614- 1622.
doi: 10.3969/j.issn.1001-506X.2016.07.21
|
| 7 |
CHEN S, HUO X, ZHAO H, et al. Active tilting flutter suppression of gyrowheel with composite-structured adaptive compensator[J]. IEEE Trans. on Industrial Electronics, 2021, 68 (7): 6227- 6237.
doi: 10.1109/TIE.2020.2994858
|
| 8 |
FANG J C, ZHENG S Q, HAN B C. Attitude sensing and dynamic decoupling based on active magnetic bearing of MSDGCMG[J]. IEEE Trans. on Instrumentation and Measurement, 2012, 61 (2): 338- 348.
doi: 10.1109/TIM.2011.2164289
|
| 9 |
STALEY D A, TYC G, FRIESE P R. System and method for spacecraft attitude control[P]. US: US20020040950A1, 2002-04-11.
|
| 10 |
HALL J M. Calibration of an innovative rate sensing/momentum management instrument for de-tuned operation and temperature effects[D]. Ottawa: Carleton University, 2008.
|
| 11 |
GUO J, ZHONG M Y. Calibration and compensation of the scale factor errors in DTG POS[J]. IEEE Trans. on Instrumentation and Measurement, 2013, 62 (10): 2784- 2794.
doi: 10.1109/TIM.2013.2261631
|
| 12 |
赵砚驰, 程建华, 赵琳. 惯性导航系统陀螺仪的发展现状与未来展望[J]. 导航与控制, 2020, 19 (Z1): 189- 196.
|
|
ZHAO Y C, CHENG J H, ZHAO L. Development status and future prospects of gyroscope in inertial navigation[J]. Navigation and Control, 2020, 19 (Z1): 189- 196.
|
| 13 |
YU C M, CAI Y W, REN Y, et al. A full-frequency angular rate measurement method of spacecraft based on multi-MSCSG weight assignment[J]. IEEE Sensors Journal, 2023, 23 (8): 8304- 8313.
doi: 10.1109/JSEN.2023.3258442
|
| 14 |
张晗, 张宇, 赵辉. 陀螺飞轮动力学特征分析[J]. 系统仿真学报, 2015, 27 (1): 112- 117.
|
|
ZHANG H, ZHANG Y, ZHAO H. Dynamics analysis of gyrowheel for its micro-spacecraft attitude control application[J]. Journal of System Simulation, 2015, 27 (1): 112- 117.
|
| 15 |
OWER J C. Analysis and control system design of an innovative tuned-rotor instrument[D]. Ottawa: Carleton University, 2000.
|
| 16 |
LIU X K, ZHAO H, YAO Y, et al. Modeling and analysis of micro-spacecraft attitude sensing with gyrowheel[J]. Sensors, 2016, 16 (8): 1321.
doi: 10.3390/s16081321
|
| 17 |
LIU X K, YAO Y, MA K M, et al. Spacecraft angular rates estimation with gyrowheel based on extended high gain observer[J]. Sensors, 2016, 16 (4): 537.
doi: 10.3390/s16040537
|
| 18 |
ZHAO Y Y, ZHAO H, HUO X, et al. A novel external rate sensing algorithm for gyrowheel based on Jacobi-Anger expansion[J]. IEEE Sensors Journal, 2019, 19 (16): 6662- 6674.
doi: 10.1109/JSEN.2019.2912390
|
| 19 |
CHEN S, HUO X, ZHAO H, et al. Axial unbalance identification of gyrowheel rotor based on multi-position calibration and CEEMDAN-IIT denoising[J]. Measurement, 2021, 183, 109852.
doi: 10.1016/j.measurement.2021.109852
|
| 20 |
ZHAO Y Y, ZHAO H, HUO X, et al. A novel two-step parameter identification method for gyrowheel system[J]. Measurement, 2019, 136, 367- 381.
doi: 10.1016/j.measurement.2018.12.082
|
| 21 |
KIKUYA Y, OHTA K, IWASAKI Y, et al. Development and in-orbit operation of deep learning attitude sensor[J]. Journal of Spacecraft and Rockets, 2023, 60 (5): 1400- 1409.
doi: 10.2514/1.A35388
|
| 22 |
SOUFI O, BELOUADHA F Z. An intelligent deep learning approach to spacecraft attitude control: the case of satellites[J]. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2024, 361 (14): 107078.
doi: 10.1016/j.jfranklin.2024.107078
|
| 23 |
MOHAMED M I, BADRAN K M, HUSSIEN A E. Anomaly detection for agile satellite attitude control system using hybrid deep-learning technique[J]. Journal of Aerospace Information Systems, 2023, 20 (12): 890- 904.
|
| 24 |
程向红, 吴昕怡, 刘丰宇, 等. 基于改进LSTM网络的无人机MEMS-IMU零偏在线标定方法[J]. 中国惯性技术学报, 2024, 32 (3): 213- 218.
|
|
CHENG X H, WU X Y, LIU F Y, et al. An improved LSTM neural network online calibration method of MEMS-IMU bias for UAV[J]. Journal of Chinese Inertial Technology, 2024, 32 (3): 213- 218.
|
| 25 |
CHEN Y D, JIANG W, WANG J, et al. An LSTM-assisted GNSS/INS integration system using IMU recomputed error information for train localization[J]. IEEE Trans. on Aerospace and Electronic Systems, 2024, 60 (3): 2658- 2671.
doi: 10.1109/TAES.2023.3328318
|
| 26 |
GOLROUDBARI A A, SABOUR M H. Generalizable end-to-end deep learning frameworks for real-time attitude estimation 6DoF inertial measurement units[J]. Measurement, 2023, 217, 113105.
doi: 10.1016/j.measurement.2023.113105
|
| 27 |
LIN C Y, ZHEN R, TONG Y T, et al. Regional ship collision risk prediction: an approach based on encoder-decoder LSTM neural network model[J]. Ocean Engineering, 2024, 296, 117019.
doi: 10.1016/j.oceaneng.2024.117019
|
| 28 |
LE-DUC T, NGUYEN-XUAN H, LEE J. Sequential motion optimization with short-term adaptive moment estimation for deep learning problems[J]. Engineering Applications of Artificial Intelligence, 2024, 129, 107593.
doi: 10.1016/j.engappai.2023.107593
|
| 29 |
ZHENG Y, CHEN C X, WANG R Q, et al. Stability analysis of rock slopes subjected to block-flexure toppling failure using adaptive moment estimation method (Adam)[J]. Rock Mechanics and Rock Engineering, 2022, 55 (6): 3675- 3686.
doi: 10.1007/s00603-022-02828-5
|
| 30 |
刘晓坤. 基于陀螺飞轮的航天器姿态角速度测量方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
LIU X K. Study on spacecraft attitude angular velocity measurement method based on gyrowheel[D]. Harbin: Harbin Institute of Technology, 2018.
|
| 31 |
ZHAO Q, YAO Y, LIU X K, et al. Modeling and analysis of gyrowheel with friction and dynamic unbalance[C]// Proc. of the Asian Simulation Conference, 2016: 262−271.
|