系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (10): 3446-3454.doi: 10.12305/j.issn.1001-506X.2025.10.28

• 制导、导航与控制 • 上一篇    

基于热扩散理论的光纤陀螺温度误差补偿方法

张云昊1,2, 周召发1,2,*, 张志利1,2, 李洪才1,2, 梁哲1,2, 刘瑾1,2   

  1. 1. 火箭军工程大学导弹工程学院,陕西 西安 710025
    2. 火箭军工程大学兵器发射理论和技术国家重点实验室,陕西 西安 710025
  • 收稿日期:2025-01-06 出版日期:2025-10-25 发布日期:2025-10-23
  • 通讯作者: 周召发
  • 作者简介:张云昊(2001—),男,硕士研究生,主要研究方向为光纤陀螺技术与温度补偿
    张志利(1966—),男,教授,博士,主要研究方向为组合导航、系统仿真
    李洪才(1983—),男,讲师,博士,主要研究方向为光纤惯导、光纤陀螺
    梁 哲(1997—),男,博士研究生,主要研究方向为光纤陀螺、组合导航
    刘 瑾(2000—),女,硕士研究生,主要研究方向为光纤陀螺技术与温度补偿
  • 基金资助:
    航空科学基金(201808U8004)资助课题

Temperature error compensation method for fiber-optic gyroscope based on thermal diffusion theory

Yunhao ZHANG1,2, Zhaofa ZHOU1,2,*, Zhili ZHANG1,2, Hongcai LI1,2, Zhe LIANG1,2, Jin LIU1,2   

  1. 1. School of Missile Engineering,Rocket Force University of Engineering,Xi’an 710025,China
    2. State Key Discipline Laboratory of Armament Launch Theory and Technology,Rocket Force University of Engineering,Xi’an 710025,China
  • Received:2025-01-06 Online:2025-10-25 Published:2025-10-23
  • Contact: Zhaofa ZHOU

摘要:

针对单一温度数据对光纤陀螺温度误差补偿过于片面的问题,提出一种基于热扩散的光纤陀螺温度误差补偿方法。首先,基于热扩散原理建立光纤环轴向任意点温度的预测模型;然后,基于该模型分别对多项式和反向传播(back propagation,BP)神经网络温度补偿模型进行优化;最后,在全温实验的条件下,结合有限元分析,对该温度预测模型的准确性进行验证,再采用优化后的补偿模型对多个光纤陀螺输出零偏进行补偿。实验结果显示,优化后的多项式补偿模型相对于传统补偿模型,补偿精度可以提高67.4%,优化后的BP神经网络补偿模型,相较于原始数据,补偿精度最高可以提升90.0%。相较于单一温度数据补偿,所提方法有效提升了光纤陀螺的输出精度。

关键词: 光纤陀螺, 零偏稳定性, 温度补偿, 多项式拟合, 反向传播神经网络

Abstract:

A thermal induced error compensation method for fiber-optic gyroscopes based on thermal diffusion is proposed to address the problem of one-sided compensation for temperature errors caused by a single temperature data. Firstly, a prediction model for the temperature at any point along the axial direction of the fiber optic ring is established based on the principle of thermal diffusion. Then, based on this model, the polynomial and back propagation (BP) neural network temperature compensation models are optimized separately. Finally, under the conditions of full temperature testing, combined with finite element analysis, the accuracy of the temperature prediction model is verified. The optimized compensation model is then used to compensate for the output bias of the multiple fiber-optic gyroscopes. The experimental results show that the optimized polynomial compensation model can improve the compensation accuracy by 67.4% compared to the traditional compensation model, and the optimized BP neural network compensation model can improve the compensation accuracy by up to 90.0% compared to the original data. Compared with the single temperature data compensation, the proposed method effectively improves the output accuracy of the fiber-optic gyroscope.

Key words: fiber-optic gyroscope, zero bias stability, temperature compensation, polynomial fitting, back propagation (BP) neural network

中图分类号: