| 1 |
SONG N F, XU X B, ZHANG Z C, et al. Advanced interferometric fiber optic gyroscope for inertial sensing: a review[J]. Journal of Lightwave Technology, 2023, 41 (13): 4023- 4034.
doi: 10.1109/JLT.2023.3260839
|
| 2 |
邱嘉荦, 王磊, 黄腾超, 等. 干涉式光纤陀螺技术发展综述[J]. 光学学报, 2022, 42 (17): 136- 145.
|
|
QIU J L, WANG L, HUANG T C, et al. Review of development of interferometric fiber-optic gyroscopes[J]. Acta Optica Sinica, 2022, 42 (17): 136- 145.
|
| 3 |
DRANITSYNA E V, EGOROV D A, UNTILOV A A. Current state and development prospects of fiber-optic gyroscopes[J]. Gyroscopy and Navigation, 2023, 14 (4): 277- 289.
doi: 10.1134/S2075108724700019
|
| 4 |
LI H Y, LI X Y, DAN X, et al. Improved thermal stability of a fiber optic gyroscope using a geometric birefringence-enhanced polarization-maintaining fiber[J]. Journal of Lightwave Technology, 2023, 41 (8): 2547- 2554.
doi: 10.1109/JLT.2023.3234259
|
| 5 |
HONG W, HU X D, ZANG Z R, et al. Accurate measurement and enhancement of fiber coil symmetry[J]. Applied Optics, 2023, 62 (16): 109- 118.
doi: 10.1364/AO.483537
|
| 6 |
LI M, LI X Y, LI H Y, et al. Bow-tie holes-aided elliptical-core polarization-maintaining fiber with high birefringence[J]. Optical Fiber Technology, 2022, 73, 103073.
doi: 10.1016/j.yofte.2022.103073
|
| 7 |
LI M, LI X Y, DAN X. Highly stable gyroscope composed of panda-type polarization-maintaining fiber coil with strong resistance to thermal stress[J]. IEEE Sensors Journal, 2024, 24 (7): 10180- 10187.
doi: 10.1109/JSEN.2024.3369734
|
| 8 |
NIKIFOROVSKII D A, DEINEKA I G, SHARKOV I A, et al. A method for fiber optic gyroscope temperature drift compensation using correlations between the readings of the gyroscope and several temperature sensors[J]. Gyroscopy and Navigation, 2022, 13 (2): 105- 109.
doi: 10.1134/S2075108722020055
|
| 9 |
MAO N, XU J N, LI J S, et al. A LSTM-RNN-based fiber optic gyroscope drift compensation[J]. Mathematical Problems in Engineering, 2021, (1): 1- 10.
|
| 10 |
CAO Y, XU W Y, LIN B, et al. Long short-term memory network of machine learning for compensating temperature error of a fiber optic gyroscope independent of the temperature sensor[J]. Applied Optics, 2022, 61 (28): 8212- 8222.
doi: 10.1364/AO.471762
|
| 11 |
LIU J G, CHEN X Y. Temperature drift compensation of a FOG based on an HKSVM optimized by an improved hybrid BAS-GSA algorithm[J]. Applied Optics, 2021, 60 (34): 10539- 10547.
doi: 10.1364/AO.440887
|
| 12 |
苑立波, 童维军, 江山, 等. 我国光纤传感技术发展路线图[J]. 光学学报, 2022, 42 (1): 9- 42.
|
|
YUAN L B, TONG W J, JIANG S, et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica, 2022, 42 (1): 9- 42.
|
| 13 |
PETRINI L, CAGNETTA F, VANDEN-EIJNDEN E, et al. Learning sparse features can lead to overfitting in neural networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2023, 2023 (11): 114003.
doi: 10.1088/1742-5468/ad01b9
|
| 14 |
WANG X W, CUI Y, CAO H L. Temperature drift compensation of fiber optic gyroscopes based on an improved method[J]. Micromachines, 2023, 14 (9): 1712.
doi: 10.3390/mi14091712
|
| 15 |
DAI Y. A brief analysis of the adaptive algorithm and optimization of the BP neural network[J]. Highlights in Science Engineering and Technology, 2024, 94, 516- 524.
doi: 10.54097/3sj3ah14
|
| 16 |
DELL’OLIO F, NATALE T, WANG Y C, et al. Miniaturization of interferometric optical gyroscopes: a review[J]. IEEE Sensors Journal, 2023, 23 (24): 29948- 29968.
doi: 10.1109/JSEN.2023.3327217
|
| 17 |
ARDITTY H J, LEFEVRE H C. Sagnac effect in fiber gyroscopes[J]. Optics Letters, 1981, 6 (8): 401- 403.
doi: 10.1364/OL.6.000401
|
| 18 |
CHEN J, DING N W, LI Z F, et al. Enhanced environmental performance of fiber optic gyroscope by an adhesive potting technology[J]. Applied Optics, 2015, 54 (26): 7828- 7834.
doi: 10.1364/AO.54.007828
|
| 19 |
WEBBER M, WILLIG R, RACZKOWSKI H, et al. Modeling of rate error in interferometric fiber-optic gyroscopes due to stress induced by moisture diffusion[J]. Journal of Lightwave Technology, 2012, 30 (14): 2356- 2362.
doi: 10.1109/JLT.2012.2198045
|
| 20 |
冷悦, 钟胜. 光纤陀螺热致漂移分析及算法补偿技术研究[J]. 光学学报, 2024, 44 (2): 135- 142.
|
|
LENG Y, ZHONG S. Thermal-induced drift analysis and algorithm compensation technology of fiber optic gyroscope[J]. Acta Optica Sinica, 2024, 44 (2): 135- 142.
|
| 21 |
PILLON J, LOUF F, BOIRON H, et al. Thermomechanical analysis of the effects of homogeneous thermal field induced in the sensing coil of a fiber-optic gyroscope[J]. Finite Elements in Analysis and Design, 2022, 212, 103826.
doi: 10.1016/j.finel.2022.103826
|
| 22 |
LING W W, LI X Y, YANG H R, et al. Reduction of the Shupe effect in interferometric fiber optic gyroscopes: the double cylinder-wound coil[J]. Optics Communications, 2016, 370, 62- 67.
doi: 10.1016/j.optcom.2016.02.064
|
| 23 |
李绪友, 张春梅, 刘华兵, 等. 光纤环十六极对称绕法温度性能的仿真与分析[J]. 中国惯性技术学报, 2016, 24 (6): 780- 785.
|
|
LI X Y, ZHANG C M, LIU H B, et al. Simulation and analysis on temperature performance of fiber ring by 16-polar symmetrical winding method[J]. Journal of Chinese Inertial Technology, 2016, 24 (6): 780- 785.
|
| 24 |
ZHANG Y, LI X Y, LIU C C, et al. Investigation of heat source position and fiber coil size for decreasing the FOG scale factor temperature error[J]. Optik, 2020, 204, 164203.
doi: 10.1016/j.ijleo.2020.164203
|
| 25 |
IEEE Std 952-1997. IEEE standard specification format guide and test procedure for single-axis interferometric fiber optic gyros[S]. America: IEEE Aerospace and Electronic Systems Society, 1997.
|
| 26 |
赵曦晶, 刘光斌, 汪立新, 等. 光纤陀螺温度漂移自适应网络模糊推理补偿[J]. 红外与激光工程, 2014, 43 (3): 790- 794.
doi: 10.3969/j.issn.1007-2276.2014.03.022
|
|
ZHAO X J, LIU G B, WANG L X, et al. Compensation for FOG temperature drift based on adaptive neuro-fuzzy inference[J]. Infrared and Laser Engineering, 2014, 43 (3): 790- 794.
doi: 10.3969/j.issn.1007-2276.2014.03.022
|
| 27 |
DONATE J P, CORTEZ P, SÁNCHEZ G G, et al. Time series forecasting using a weighted cross-validation evolutionary artificial neural network ensemble[J]. Neurocomputing, 2013, 109, 27- 32.
doi: 10.1016/j.neucom.2012.02.053
|
| 28 |
OLYAEE S, EBRAHIMPOUR R, HAMEDI S. Modeling and compensation of periodic nonlinearity in two-mode interferometer using neural networks[J]. IETE Journal of Research, 2010, 56 (2): 102- 110.
doi: 10.4103/0377-2063.63090
|
| 29 |
NIU D X, LV J L, LIU H Y. Evaluating electric environmental issues using BP neural network with optimised hidden layer nodes[J]. International Journal of Global Environmental Issues, 2009, 9 (3): 227- 238.
doi: 10.1504/IJGENVI.2009.026944
|
| 30 |
RAMADASS G A, VEDACHALAM N, UMAPATHY A, et al. Finite element analysis of the influence of ambient temperature variations on the performance of fiber optic gyroscope sensing coils[J]. Marine Technology Society Journal, 2017, 51 (1): 16- 22.
doi: 10.4031/MTSJ.51.1.2
|