系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (9): 2870-2889.doi: 10.12305/j.issn.1001-506X.2025.09.10
• 传感器与信号处理 • 上一篇
李开明1,2(), 张袁鹏3,*(
), 罗迎1,2(
), 代肖楠1,4(
)
收稿日期:
2024-06-21
出版日期:
2025-09-25
发布日期:
2025-09-16
通讯作者:
张袁鹏
E-mail:kimysunrsp@163.com;zhangyuanpeng312@163.com;luoying2002521@163.com;y18500553454@163.com
作者简介:
李开明(1982—),男,副教授,博士,主要研究方向为雷达成像与目标识别基金资助:
Kaiming LI1,2(), Yuanpeng ZHANG3,*(
), Ying LUO1,2(
), Xiaonan DAI1,4(
)
Received:
2024-06-21
Online:
2025-09-25
Published:
2025-09-16
Contact:
Yuanpeng ZHANG
E-mail:kimysunrsp@163.com;zhangyuanpeng312@163.com;luoying2002521@163.com;y18500553454@163.com
摘要:
弹道导弹目标分类识别是导弹防御系统的核心问题之一,具有重要的军事价值。首先,从装备发展角度对世界上主要国家的弹道导弹防御系统及其典型雷达装备进行简要概述。在此基础上,进一步从技术角度对基于传统方法的弹道导弹目标分类识别和基于深度学习方法的弹道导弹目标分类识别进行梳理总结。最后,对弹道导弹雷达目标识别的发展方向进行展望,为后续研究提供参考和借鉴。
中图分类号:
李开明, 张袁鹏, 罗迎, 代肖楠. 弹道导弹雷达目标识别研究进展[J]. 系统工程与电子技术, 2025, 47(9): 2870-2889.
Kaiming LI, Yuanpeng ZHANG, Ying LUO, Xiaonan DAI. Research progress on radar target recognition of ballistic missile[J]. Systems Engineering and Electronics, 2025, 47(9): 2870-2889.
93 |
GAO H W, XIE L G, WEN S L, et al. Micro-Doppler signature extraction from ballistic target with micro-motions[J]. IEEE Trans. on Aerospace and Electronic Systems, 2010, 46 (4): 1969- 1982.
doi: 10.1109/TAES.2010.5595607 |
94 |
YAO H Y, SUN W F, MA X Y, et al. Precession feature extraction of warhead with empennages[J]. Electronics Letters, 2013, 49 (9): 617- 618.
doi: 10.1049/el.2013.0302 |
95 |
ZHOU Y, CHEN Z Y, ZHANG L R, et al. Micro-Doppler curves extraction and parameters estimation for cone-shaped target with occlusion effect[J]. IEEE Sensors Journal, 2018, 18 (7): 2892- 2902.
doi: 10.1109/JSEN.2018.2800053 |
96 |
ZHANG W P, LI K W, JING W D. Micro-motion frequency estimation of radar targets with complicated translations[J]. International Journal of Electronics and Communications, 2015, 69 (6): 903- 914.
doi: 10.1016/j.aeue.2015.02.011 |
97 |
ZHANG W P, LI K L, JIANG W D. Parameter estimation of radar targets with macro-motion and micro-motion based on circular correlation coefficients[J]. IEEE Signal Processing Letters, 2015, 22 (5): 633- 637.
doi: 10.1109/LSP.2014.2365547 |
98 | GU F F, FU M H, LIANG B S, et al. Translational motion compensation and micro-Doppler feature extraction of space spinning targets[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15 (10): 1550- 1554. |
99 | 韩勋, 杜兰, 刘宏伟, 等. 基于时频分布的空间锥体目标微动形式分类[J]. 系统工程与电子技术, 2013, 35 (4): 684- 691. |
HAN X, DU L, LIU H W, et al. Classification of micro-motion form of space cone-shaped objects based on time-frequency distribution[J]. Systems Engineering and Electronics, 2013, 35 (4): 684- 691. | |
100 |
GUO K Y, SHENG X Q. Precise recognition of warhead and decoy based on components of micro-Doppler frequency curves[J]. Science China-Information Sciences, 2012, 55 (4): 850- 856.
doi: 10.1007/s11432-011-4393-6 |
101 | PERSICO A R, CLEMENTE C, PALLOTTA L, et al. Micro-Doppler classification of ballistic threats using Krawtchouk moments[C]//Proc. of the IEEE Radar Conference, 2016: 121−126. |
102 |
PERSICO A R, CLEMENTE C, GAGLIONE D, et al. On model, algorithms, and experiment for micro-Doppler-based recognition of ballistic targets[J]. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (3): 1088- 1108.
doi: 10.1109/TAES.2017.2665258 |
103 | 赵双, 鲁卫红, 冯存前, 等. 基于窄带雷达网的弹道目标三维进动特征提取[J]. 雷达学报, 2017, 6 (1): 98- 105. |
ZHAO S, LU W H, FENG C Q, et al. Three-dimensional precession feature extraction of ballistic targets based on narrowband radar network[J]. Journal of Radars, 2017, 6 (1): 98- 105. | |
104 | 李靖卿, 冯存前, 孙宏伟, 等. 基于混合体制雷达网的弹道目标微特征及外形参数提取[J]. 航空学报, 2016, 37 (6): 1963- 1973. |
LI J Q, FENG C Q, SUN H W, et al. Micro-motion feature and shape parameters extraction based on hybridscheme radar network for ballistic targets[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37 (6): 1963- 1973. | |
105 | 罗迎, 张群, 封同安, 等. OFD-LFM MIMO雷达中旋转目标微多普勒效应分析及三维微动特征提取[J]. 电子与信息学报, 2011, 33 (1): 8- 13. |
LUO Y, ZHANG Q, FENG T A, et al. Micro-Doppler effect analysis of rotating target and three-dimensional micro-motion feature extraction in OFD-LFM MIMO radar[J]. Journal of Electronics & Information Technology, 2011, 33 (1): 8- 13. | |
106 | WANG Z H, LUO Y, LI K M, et al. Micro-Doppler parameters extraction of precession cone-shaped targets based on rotating antenna[J]. Remote Sensing, 2022, 14 (10): 2549. |
107 | CHEN X B, YE C M, WANG Y, et al. Unambiguous estimation of multidimensional parameters for space precession targets with wideband radar measurements[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5112716. |
108 |
ZHU N N, HU J, XU S Y, et al. Micro-motion parameter extraction for ballistic missile with wideband radar using improved ensemble EMD method[J]. Remote Sensing, 2021, 13 (17): 3545.
doi: 10.3390/rs13173545 |
109 | CHEN X B, YE C M, DONG C Z, et al. Parameter estimation for space precession targets with intermittent observation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4027405. |
110 |
ZHUO Z Y, ZHOU Y, DU L, et al. A noise robust micro-range estimation method for precession cone-shaped targets[J]. Remote Sensing, 2021, 13 (9): 1820.
doi: 10.3390/rs13091820 |
111 | 邵长宇. 基于HRRP序列的空间锥体目标微动参数估计方法研究[D]. 西安: 西安电子科技大学, 2016. |
SHAO C Y. Research on micro-motion parameters estimation of space cone-shaped targets based on HRRP sequence[D]. Xi’an: Xidian University, 2016. | |
112 | 孙善丽, 周建江, 夏伟杰. HRRP代价函数优化方法的弹道导弹特征参数提取[J]. 信号处理, 2017, 33 (7): 1018- 1025. |
SUN S L, ZHOU J J, XIA W J. HRRP cost function optimization method for ballistic missile feature parameter extraction[J]. Journal of Signal Processing, 2017, 33 (7): 1018- 1025. | |
113 | 徐少坤, 刘记红, 袁翔宇. 基于HRRP序列的中段目标二维几何特征反演方法[J]. 电子与信息学报, 2017, 39 (10): 2366- 2373. |
XU S K, LIU J H, YUAN X Y. Two-dimensional geometric feature inversion method for midcourse target based on HRRPs[J]. Journal of Electronics & Information Technology, 2017, 39 (10): 2366- 2373. | |
114 | 魏嘉琪, 张磊, 刘宏伟, 等. 基于相位测距的宽带雷达弹道目标微动几何参数估计[J]. 电子与信息学报, 2018, 40 (9): 2227- 2234. |
WEI J Q, ZHANG L, LIU H W, et al. Micro-motion and geometric parameters estimation of wide-band radar cone-shaped targets based on phase-derived range[J]. Journal of Electronics & Information Technology, 2018, 40 (9): 2227- 2234. | |
115 | 周代英, 张瑛, 冯健. 利用一维像序列时域差分估计目标进动频率[J]. 航空学报, 2018, 39 (z1): 64- 69. |
ZHOU D Y, ZHANG Y, FENG J. Estimation of target precession frequency based on time-domain in difference of sequential HRRPS[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39 (z1): 64- 69. | |
116 | 苏楠, 戴奉周, 刘宏伟. 基于HRRP序列的钝头倒角锥目标微动特性分析及参数估计[J]. 电子与信息学报, 2019, 41 (7): 1751- 1757. |
SU N, DAI F Z, LIU H W. Micro-motion characteristic analysis and parameters estimation for blunt-nosed chamfered cone based on HRRP sequence[J]. Journal of Electronics & Information Technology, 2019, 41 (7): 1751- 1757. | |
117 | 周春蕾, 陈辉, 任雪皎. 基于PCA-RCE的雷达目标一维距离像识别研究[J]. 战术导弹技术, 2013, (4): 86- 89. |
ZHOU C L, CHEN H, REN X J. Study of range profile recognition of radar target based on PCA-RCE[J]. Tactical Missile Technology, 2013, (4): 86- 89. | |
118 | DAI J H, WANG J F. Recognition of warheads based on features of range profiles in ballistic missile defense [C]//Proc. of the CIE International Conference on Radar, 2016. |
119 | 戴金鸿. 基于高分辨率距离像特征的弹道导弹中段目标识别[D]. 上海: 上海交通大学, 2017. |
DAI J H. Target recognition in ballistic missile midcourse defense based on features of HRRPs[D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
120 |
PERSICO A R, ILIOUDIS C V, CLEMENTE C, et al. Novel classification algorithm for ballistic target based on HRRP frame[J]. IEEE Trans. on Aerospace and Electronic Systems, 2019, 55 (6): 3168- 3189.
doi: 10.1109/TAES.2019.2905281 |
1 |
ZHANG R, WANG Y, YE C, et al. Precession parameter estimation of warhead withfins based on micro-Doppler effect andradar network[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (1): 443- 459.
doi: 10.1109/TAES.2022.3182635 |
2 |
WEI N N, ZHANG L M, ZHANG X G. A weighted decision-level fusion architecture for ballistic target classification in midcourse phase[J]. Sensors, 2022, 22 (17): 6649.
doi: 10.3390/s22176649 |
3 | 刘继忠. 弹道导弹[M]. 北京: 国防工业出版社, 2013. |
LIU J Z. Ballistic missile[M]. Beijing: National Defense Industry Press, 2013. | |
4 | 王大勇. 美国典型弹道导弹防御系统发展现状及水平[J]. 中国航天, 2016, (12): 36- 40. |
WANG D Y. Development status and level of typical ballistic missile defense systems in the United States[J]. Aerospace China, 2016, (12): 36- 40. | |
5 | 刘丙杰, 胡玉颖, 葛幸. 美国弹道导弹防御系统2.0解析[J]. 飞航导弹, 2021, (10): 25- 29. |
LIU B J, HU Y Y, GE X. Analysis of the United States ballistic missile defense system 2.0[J]. Aerodynamic Missile Journal, 2021, (10): 25- 29. | |
6 | 唐毓燕, 李芳芳, 张振宇, 等. 美国弹道导弹防御系统中的杀伤链与杀伤网解析[J]. 现代防御技术, 2023, 51 (1): 1- 10. |
TANG Y Y, LI F F, ZHANG Z Y, et al. Analysis of kill chain and kill net inside the US ballistic missile defense system[J]. Modern Defence Technology, 2023, 51 (1): 1- 10. | |
7 | 胡玉颖, 刘丙杰, 潘应华. 美军弹道导弹防御系统预警雷达网现状与关键技术分析[J]. 飞航导弹, 2020, (12): 89- 92,98. |
HU Y Y, LIU B J, PAN Y H. Analysis of the current situation and key technologies of the early warning radar network of the U. S. ballistic missile defense system[J]. Aerodynamic Missile Journal, 2020, (12): 89- 92,98. | |
121 | 艾小锋, 李永祯, 赵锋, 等. 基于多视角一维距离像序列的进动目标特征提取[J]. 电子与信息学报, 2011, 33 (12): 2846- 2851. |
AI X F, LI Y Z, ZHAO F, et al. Feature extraction of precession targets using multi-aspect observed HRRP sequences[J]. Journal of Electronics & Information Technology, 2011, 33 (12): 2846- 2851. | |
122 | 艾小锋, 邹小海, 李永祯, 等. 基于时间-距离像分布的锥体目标进动与结构特征提取[J]. 电子与信息学报, 2011, 33 (9): 2083- 2088. |
AI X F, ZOU X H, LI Y Z, et al. Feature extraction of precession and structure of cone-shaped object based on time-HRRP distribution[J]. Journal of Electronics & Information Technology, 2011, 33 (9): 2083- 2088. | |
123 | 艾小锋, 邹小海, 李浩智, 等. T/R-R双基地雷达进动目标参数估计与ISAR成像[J]. 电子学报, 2012, 40 (6): 1148- 1153. |
AI X F, ZOU X H, LI H Z, et al. Parameter estimation and ISAR imaging of precession targets using T/R-R bistatic radars[J]. Acta Electronica Sinica, 2012, 40 (6): 1148- 1153. | |
124 |
贺思三, 赵会宁, 冯存前. 多视角距离像序列弹道目标的进动参数估计[J]. 信号处理, 2013, 29 (8): 1027- 1035.
doi: 10.3969/j.issn.1003-0530.2013.08.016 |
HE S S, ZHAO H N, FENG C Q. Precession parameter estimation for ballistic targets based on multi-aspect range-profile sequence[J]. Journal of Signal Processing, 2013, 29 (8): 1027- 1035.
doi: 10.3969/j.issn.1003-0530.2013.08.016 |
|
125 | 李靖卿, 冯存前, 童宁宁, 等. 基于多视角距离像的弹道目标三维微动特征提取[J]. 空军工程大学学报(自然科学版), 2014, 15 (5): 34- 37. |
LI J Q, FENG C Q, TONG N N, et al. Three-Dimensional feature extraction of ballistic target based on the multi-view range profile[J]. Journal of Airforce Engineering University (Natural Science Edition), 2014, 15 (5): 34- 37. | |
126 | 张栋, 冯存前, 贺思三, 等. 组网雷达弹道目标三维微动特征提取[J]. 空军工程大学学报(自然科学版), 2014, 15 (4): 34- 37. |
ZHANG D, FENG C Q, HE S S, et al. Extraction of three-dimensional micro-motion feature from ballistic target in netted radar[J]. Journal of Airforce Engineering University (Natural Science Edition), 2014, 15 (4): 34- 37. | |
127 | 张栋, 冯存前, 童宁宁, 等. 组网雷达弹道目标三维进动特征提取[J]. 西安电子科技大学学报, 2015, 42 (2): 146- 151. |
ZHANG D, FENG C Q, TONG N N, et al. Extraction of three-dimensional precession feature from ballistic target in netted radar[J]. Journal of Xidian University, 2015, 42 (2): 146- 151. | |
128 | 赵双, 鲁卫红, 冯存前, 等. 多视角微多普勒融合的进动目标特征提取[J]. 信号处理, 2016, 32 (3): 296- 303. |
8 | 彭为. 美国反导雷达装备发展综述[J]. 现代雷达, 2013, 35 (11): 22- 25. |
PENG W. Overview of American missile defense radar[J]. Modern Radar, 2013, 35 (11): 22- 25. | |
9 | 刘要森, 张周卫, 汪雅红, 等. 俄罗斯导弹防御系统发展概述[J]. 中国航天, 2022, (6): 27- 31. |
LIU Y S, ZHANG Z W, WANG Y H, et al. Overview of the development of the Russian missile defense system[J]. China Aerospace, 2022, (6): 27- 31. | |
10 | 李乐工. 俄罗斯导弹防御系统装备建设[J]. 现代军事, 2017, (5): 79- 82. |
LI L G. Equipment construction of the Russian missile defense system[J]. Modern Military, 2017, (5): 79- 82. | |
11 | 吕琳琳, 李国华, 刘绍鹏. 印度导弹防御系统能力和发展趋势分析[J]. 飞航导弹, 2020, (11): 40- 44,52. |
LV L L, LI G H, LIU S P. Analysis of the capabilities and development trends of the Indian missile defense system[J]. Aerodynamic Missile Journal, 2020, (11): 40- 44,52. | |
12 | 王毓龙, 刘曰胜, 赵玲, 等. 以色列国家导弹防御体系建设发展研究[J]. 中国电子科学研究院学报, 2023, 18 (1): 97- 102. |
WANG Y L, LIU Y S, ZHAO L, et al. Research on the construction and development of Israel national missile defense system[J]. Journal of China Academy of Electronic Science, 2023, 18 (1): 97- 102. | |
13 | 熊瑛, 吕涛, 陈祎璠, 等. 2022 年国外导弹防御发展研究[J]. 战术导弹技术, 2023, (2): 9- 14. |
XIONG Y, LV T, CHEN Y F, et al. Research on the development of foreign missile defense in 2022[J]. Tactical Missile Technology, 2023, (2): 9- 14. | |
14 | 陈雅萍, 高雁翎. 2020年世界弹道导弹防御系统发展回顾[J]. 飞航导弹, 2021, (3): 1- 6. |
CHEN Y P, GAO Y L. Review of the development of the world ballistic missile defense system in 2020[J]. Aerodynamic Missile Journal, 2021, (3): 1- 6. | |
15 | 王峰辉, 王枭, 张宇令. 美国及其盟国在亚太地区的弹道导弹防御系统[J]. 飞航导弹, 2020, (7): 85- 89. |
WANG F H, WANG X, ZHANG Y L. The ballistic missile defense system of the United States and its allies in the Asia-Pacific region[J]. Aerodynamic Missile Journal, 2020, (7): 85- 89. | |
16 | 李开明, 代肖楠, 罗迎, 等. 弹道目标雷达微动特征提取与识别研究综述[J]. 空军工程大学学报, 2023, 24 (1): 7- 17. |
LI K M, DAI X N, LUO Y, et al. Review of ballistic targets with radar micro-motion feature extraction and recognition[J]. Journal of Airforce Engineering University (Natural Science Edition), 2023, 24 (1): 7- 17. | |
17 | 周万幸. 弹道导弹雷达目标识别技术[M]. 北京: 电子工业出版社, 2011. |
ZHOU W X. BMD radar target recognition technology[M]. Beijing: Publishing House of Electronics Industry, 2011. | |
18 | 张群, 罗迎. 雷达目标微多普勒效应[M]. 北京: 国防工业出版社, 2014. |
ZHANG Q, LUO Y. Radar target micro-Doppler effect[M]. Beijing: National Defense Industry Press, 2014. | |
19 | 黎湘, 刘永祥, 李康乐. 雷达目标微动特性[M]. 北京: 科学出版社, 2016. |
LI X, LIU Y X, LI K L. Radar target micro-motion characteristics[M]. Beijing: Science Press, 2016. | |
20 | 刘进. 微动目标雷达信号参数估计与物理特征提取[D]. 长沙: 国防科学技术大学, 2010. |
128 | ZHAO S, LU W H, FENG C Q, et al. Feature extraction of precession targets based on multi-aspect micro-Doppler fusion[J]. Journal of Singal Processing, 2016, 32 (3): 296- 303. |
129 | 赵双, 鲁卫红, 冯存前, 等. 多视角弹道目标微动特征提取仿真研究[J]. 计算机仿真, 2016, 33 (7): 45- 49. |
ZHAO S, LU W H, FENG C Q, et al. Simulation and research on micro-motion feature extraction of ballistic object based on multi-aspect observation[J]. Computer Simulation, 2016, 33 (7): 45- 49. | |
130 | 许丹, 田波, 冯存前, 等. 基于多站雷达自适应融合的光滑对称锥体三维重构与参数估计[J]. 信号处理, 2017, 33 (4): 627- 634. |
XU D, TIAN B, FENG C Q, et al. Three-dimensional reconstruction and parameter estimation of smooth symmetric cone based on multistatic radar adaptive fusion[J]. Journal of Signal Processing, 2017, 33 (4): 627- 634. | |
131 | 许丹, 田波, 冯存前, 等. 双基地雷达对弹道导弹目标特征提取仿真[J]. 计算机仿真, 2017, 34 (9): 15- 19. |
XU D, TIAN B, FENG C Q, et al. Feature extraction simulation of ballistic missile targets based on the bistatic radar[J]. Computer Simulation, 2017, 34 (9): 15- 19. | |
132 | 冯存前, 陈蓉, 黄大荣, 等. 基于组网雷达的有翼弹道目标三维成像[J]. 电子与信息学报, 2018, 40 (3): 517- 524. |
FENG C Q, CHEN R, HUANG D R, et al. Three-dimensional imaging of ballistic targets with vanes based on netted radar[J]. Journal of Electronics & Information Technology, 2018, 40 (3): 517- 524. | |
133 | 许丹, 冯存前, 张蓉, 等. 基于多视角距离像的空间旋转目标三维重构[J]. 微波学报, 2018, 34 (1): 16- 20. |
XU D, FENG C Q, ZHANG R, et al. Space rotating targets three-dimensional reconstruction based on multi-aspect range profile[J]. Journal of Microwaves, 2018, 34 (1): 16- 20. | |
134 | 许丹, 田波, 李靖卿, 等. 混合体制雷达网弹道目标进动特征提取[J]. 哈尔滨工业大学学报, 2019, 51 (5): 138- 145. |
XU D, TIAN B, LI J Q, et al. Precession feature extraction of ballistic target based on hybrid-scheme radar network[J]. Journal of Harbin Institute of Technology, 2019, 51 (5): 138- 145. | |
135 | 金光虎. 中段弹道目标ISAR成像及物理特性反演技术研究[D]. 长沙: 国防科学技术大学, 2009. |
JIN G H. Research on ISAR imaging and physical feature extraction of midcourse ballistic target[D]. Changsha: National University of Defense Technology, 2009. | |
20 | LIU J. Radar parameters estimation and physical feature extraction for micro-motion targets[D]. Changsha: National University of Defense Technology, 2010. |
21 | 冯德军, 王博, 王伟. 弹道中段雷达目标识别研究进展综述[J]. 中国电子科学研究院学报, 2013, 8 (2): 142- 148. |
FENG D J, WANG B, WANG W. Overview of progress in midcourse radar target recognition[J]. Journal of China Academy of Electronic Science, 2013, 8 (2): 142- 148. | |
22 | 吕金建, 丁建江, 项清, 等. 弹道导弹识别技术发展综述[J]. 探测与控制学报, 2010, 32 (4): 7- 14. |
LV J J, DING J J, XIANG Q, et al. Review of target recognition techniques for ballistic missile[J]. Journal of Detection & Control, 2010, 32 (4): 7- 14. | |
23 | 李星星, 姚汉英, 孙文峰. 基于RCS特征的弹道中段目标粗分类[J]. 空军预警学院学报, 2013, 27 (1): 20- 24. |
LI X X, YAO H Y, SUN W F. Rough classification of ballistic midcourse targets based on rcs characteristics[J]. Journal of Air Force Early Warning Academy, 2013, 27 (1): 20- 24. | |
24 | 高红卫, 谢良贵, 文树梁, 等. 弹道导弹目标微多普勒特征提取[J]. 雷达科学与技术, 2008, 6 (2): 96- 101. |
GAO H W, XIE L G, WEN S L, et al. Micro-Doppler feature extraction of ballistic missile targets[J]. Radar Science and Technology, 2008, 6 (2): 96- 101. | |
25 | 雷鹏, 刘永祥, 李康乐, 等. 摆动锥体运动辨识及最大摆动角估计[J]. 系统工程与电子技术, 2013, 35 (11): 2258- 2262. |
LEI P, LIU Y X, LI K L, et al. Micro-motion identification and maximum swing angle estimation of cone-shaped wobbling targets[J]. Systems Engineering and Electronics, 2013, 35 (11): 2258- 2262. | |
26 | 张群, 胡健, 罗迎, 等. 微动目标雷达特征提取、成像与识别研究进展[J]. 雷达学报, 2018, 7 (5): 531- 547. |
ZHANG Q, HU J, LUO Y, et al. Research progresses in radar feature extraction, imaging, and recognition of target with micro-motions[J]. Journal of Radars, 2018, 7 (5): 531- 547. | |
27 |
CHOI I O, PARK S H, KIM M, et al. Efficient discrimination of ballistic targets with micromotions[J]. IEEE Trans. on Aerospace and Electronic Systems, 2020, 56 (2): 1243- 1261.
doi: 10.1109/TAES.2019.2928611 |
136 |
刘慧敏, 王宏强, 黎湘. 逆合成孔径雷达像轮廓提取方法[J]. 系统工程与电子技术, 2010, 32 (10): 2076- 2080.
doi: 10.3969/j.issn.1001-506X.2010.10.13 |
LIU H M, WANG H Q, LI X. Research on contour extraction methods for inverse synthetic aperture radar images[J]. Systems Engineering and Electronics, 2010, 32 (10): 2076- 2080.
doi: 10.3969/j.issn.1001-506X.2010.10.13 |
|
137 |
JIN G H, GAO X Z, DONG Z. Two-dimensional length extraction of ballistic target from ISAR Images using a new scaling method by affine registration[J]. Defence Science Journal, 2014, 64 (5): 458- 463.
doi: 10.14429/dsj.64.5001 |
138 | 宋扬. 空间锥体目标的成像与参数估计方法研究[D]. 西安: 西安电子科技大学, 2014. |
SONG Y. Research on imaging and parameters estimation for cone-shaped targets[D]. Xi’an: Xidian University, 2014. | |
139 | 陈蓉, 冯存前, 贺思三, 等. 采用ISAR像估计弹道目标微动特征的方法[J]. 系统工程与电子技术, 2017, 39 (7): 1500- 1505. |
CHEN R, FENG C Q, HE S S, et al. Micro-motion feature estimation method using ISAR images for ballistic targets[J]. Systems Engineering and Electronics, 2017, 39 (7): 1500- 1505. | |
140 | 金光虎, 高勋章, 黎湘, 等. 基于ISAR像序列的弹道目标进动特征提取[J]. 电子学报, 2010, 38 (6): 1233- 1238. |
JIN G H, GAO X Z, LI X, et al. Precession feature extraction of ballistic targets based on dynamic isar image sequence[J]. Acta Electronica Sinica, 2010, 38 (6): 1233- 1238. | |
141 | 束长勇, 陈世春, 吴洪骞, 等. 基于ISAR像序列的锥体目标进动及结构参数估计[J]. 电子与信息学报, 2015, 37 (5): 1078- 1084. |
SHU C Y, CHEN S C, WU H Q, et al. Precession and structure parameters estimation of precession cone target based on ISAR image sequence[J]. Journal of Electronics & Information Technology, 2015, 37 (5): 1078- 1084. | |
142 |
徐少坤, 刘记红, 袁翔宇, 等. 基于ISAR图像的中段目标二维几何特征反演方法[J]. 电子与信息学报, 2015, 37 (2): 339- 345.
doi: 10.11999/JEIT140338 |
28 | 陈未未, 张兴敢. 基于一维距离像和微动特征的弹道导弹识别方法[J]. 南京大学学报(自然科学版), 2016, 52 (6): 1113- 1120. |
CHEN W W, ZHANG X G. A recognition method of ballistic missile based on multiple feature combination[J]. Journal of Nanjing University (Natural Sciences), 2016, 52 (6): 1113- 1120. | |
29 | 王俊, 郑彤, 雷鹏, 等. 深度学习在雷达中的研究综述[J]. 雷达学报, 2018, 7 (4): 395- 411. |
WANG J, ZHENG T, LEI P, et al. Study on deep learning in radar[J]. Journal of Radars, 2018, 7 (4): 395- 411. | |
30 | 赵飞翔, 刘永祥, 霍凯. 基于栈式降噪稀疏自动编码器的雷达目标识别方法[J]. 雷达学报, 2017, 6 (2): 149- 156. |
ZHAO F X, LIU Y X, HUO K. Radar target recognition based on stacked denoising sparse autoencoder[J]. Journal of Radars, 2017, 6 (2): 149- 156. | |
31 | 詹武平, 郑永煌, 王金霞. 基于深度神经网络模型的雷达目标识别[J]. 现代雷达, 2018, 40 (1): 16- 19. |
ZHAN W P, ZHENG Y H, WANG J X. Radar target recogintion based on deep neural network[J]. Modern Radar, 2018, 40 (1): 16- 19. | |
32 | CAI T T, SHENG Y J, HE Z, et al. Classification and recognition of ballistic microcephalus based on deep neural network[C]//Proc. of the International Applied Computational Electromagnetics Society Symposium, 2019. |
33 |
CHEN J, XU S Y, CHEN Z P. Convolutional neural network for classifying space target of the same shape by using RCS time series[J]. IET Radar, Sonar & Navigation, 2018, 12 (11): 1268- 1275.
doi: 10.1049/iet-rsn.2018.5237 |
34 | WENGROWSKI E, PURRI M, DANA K, et al. Deep CNNs as a method to classify rotating objects based on monostatic RCS[J]. IET Radar, Sonar & Navigation, 2019, 13 (7): 1092- 1100. |
35 | YE L, HU S B, YAN T T, et al. Radar target shape recognition using a gated recurrent unit based on RCS time series’ statistical features by sliding window segmentation[J]. IET Radar, Sonar & Navigation, 2021, 15 (12): 1715- 1726. |
142 |
XU S K, LIU J H, YUAN X Y, et al. Two-dimensional geometric feature inversion method for midcourse target based on ISAR image[J]. Journal of Electronics & Information Technology, 2015, 37 (2): 339- 345.
doi: 10.11999/JEIT140338 |
143 |
BAI X R, ZHOU F, BAO Z. High-resolution three-dimensional imaging of space targets in micromotion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8 (7): 3428- 3440.
doi: 10.1109/JSTARS.2015.2431119 |
144 |
LIU L, ZHOU F, BAI X R, et al. Joint cross-range scaling and 3D geometry reconstruction of ISAR targets based on factorization method[J]. IEEE Trans. on Image Processing, 2016, 25 (4): 1740- 1750.
doi: 10.1109/TIP.2016.2526905 |
145 |
BAI X R, BAO Z. High-resolution 3D imaging of precession cone-shaped targets[J]. IEEE Trans. on Antennas and Propagation, 2014, 62 (8): 4209- 4219.
doi: 10.1109/TAP.2014.2329004 |
146 |
BAI X R, XING M D, ZHOU F, et al. High-resolution three-dimensional imaging of spinning space debris[J]. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47 (7): 2352- 2362.
doi: 10.1109/TGRS.2008.2010854 |
147 |
NING Y, ZHOU F, BAI X R, et al. A method for 3-D ISAR Imaging of space debris[J]. IEEE Trans. on Aerospace and Electronic Systems, 2019, 55 (2): 864- 876.
doi: 10.1109/TAES.2018.2866033 |
148 |
BAI X R, BAO Z. Imaging of rotation-symmetric space targets based on electromagnetic modeling[J]. IEEE Trans. on Aerospace and Electronic Systems, 2014, 50 (3): 1680- 1689.
doi: 10.1109/TAES.2014.120772 |
149 | 胡晓伟, 童宁宁, 何兴宇, 等. 基于微动参数估计的非对称进动目标三维成像[J]. 系统工程与电子技术, 2016, 38 (3): 501- 505. |
HU X W, TONG N N, HE X Y, et al. Three-dimensional imaging of precession targets with unsymmetrical appendixes based on micro-motion parameters estimation[J]. Systems Engineering and Electronics, 2016, 38 (3): 501- 505. | |
150 | 胡健, 罗迎, 张群, 等. 弹道目标宽带雷达干涉式三维成像与微动特征提取[J]. 电子与信息学报, 2017, 39 (8): 1865- 1871. |
HU J, LUO Y, ZHANG Q, et al. Three-dimensional interferometric imaging and micro-motion feature extraction of ballistic targets in wideband radar[J]. Journal of Electronics & Information Technology, 2017, 39 (8): 1865- 1871. | |
151 | 李泽江. 弹道目标动态极化特性分析及鉴别方法研究[D]. 长沙: 国防科学技术大学, 2013. |
LI Z J. Dynamic polarization characteristic analysis and discrimination methods of ballistic targets[D]. Changsha: National University of Defense Technology, 2013. | |
152 | 程旭, 李永祯, 徐振海, 等. 基于H/α极化分解的弹道目标鉴别[J]. 系统工程与电子技术, 2015, 37 (11): 2425- 2431. |
CHENG X, LI Y Z, XU Z H, et al. Ballistic target discrimination based on H/α polarization decomposition[J]. Systems Engineering and Electronics, 2015, 37 (11): 2425- 2431. | |
153 | 帅玮祎, 王晓丹, 宋亚飞, 等. 弹道导弹中段目标角度极化相关性分析[J]. 激光与红外, 2015, 45 (1): 79- 83. |
SHUAI W Y, WANG X D, SONG Y F, et al. Analysis on angle polarization correlation of ballistic missile target[J]. Laser & Infrared, 2015, 45 (1): 79- 83. | |
154 | 宗志伟. 弹道中段目标极化雷达识别方法[D]. 长沙: 国防科学技术大学, 2016. |
ZONG Z W. Discrimination methods for ballistic targets base on polarization radar[D]. Changsha: National University of Defense Technology, 2016. | |
155 | 张胜峰. 极化特征在真假弹头识别中的应用[D]. 北京: 中国电子科技集团公司电子科学研究院, 2019. |
ZHANG S F. Application of polarization characteristics in the identification of true and false warheads[D]. Beijing: Electronic Science Research Institute of China Electronics Science and Technology Group Corporation, 2019. | |
156 | 张胜峰, 马超, 朱新国, 等. 弹道目标宽带极化特征提取分析[J]. 现代雷达, 2020, 42 (1): 45- 50. |
ZHANG S F, MA C, ZHU X G, et al. Wideband polarization feature extraction of ballistic targets[J]. Modern Radar, 2020, 42 (1): 45- 50. | |
157 | 马超, 王建明, 刘传保, 等. 基于极化重构的弹头识别方法研究[J]. 现代雷达, 2023, 45 (3): 8- 16. |
MA C, WANG J M, LIU C B, et al. A study on warhead recognition method based on polarization reconstruction[J]. Modern Radar, 2023, 45 (3): 8- 16. | |
158 | CHEN J, XU S Y, HU P J, et al. Precession period extraction of axisymmetric space target from RCS sequence via convolutional neural network[C]//Proc. of the Progress in Electromagnetics Research Symposium, 2018: 2077−2082. |
159 |
WANG S R, LI M M, YANG T, et al. Cone-shaped space target inertia characteristics identification by deep learning with compressed dataset[J]. IEEE Trans. on Antennas and Propagation, 2022, 70 (7): 5217- 5226.
doi: 10.1109/TAP.2022.3172759 |
160 |
LEE J I, KIM N, MIN S, et al. Space target classification improvement by generating micro-Doppler signatures considering incident angle[J]. Sensors, 2022, 22 (4): 1653.
doi: 10.3390/s22041653 |
161 | 李江, 冯存前, 王义哲, 等. 一种用于锥体目标微动分类的深度学习模型[J]. 西安电子科技大学学报, 2020, 47 (3): 105- 112. |
LI J, FENG C Q, WANG Y Z, et al. Deep learning model for micro-motion classification of cone targets[J]. Journal of Xidian University, 2020, 47 (3): 105- 112. | |
162 |
BENGIO Y, MESNARD T, FISCHER A, et al. STDP-compatible approximation of backpropagation in an energy-based model[J]. Neural Computation, 2017, 29 (3): 555- 577.
doi: 10.1162/NECO_a_00934 |
36 | XUE R B, LI W, FENG Z, et al. Deep CNN for micromotion recognition of space targets[C]//Proc. of the International Conference on Radar, 2013. |
37 | WANG Y Z, FENG C Q, ZHANG Y S, et al. Classification of space targets with micro-motion based on deep CNN[C]//Proc. of the IEEE 2nd International Conference on Electronic Information and Communication Technology, 2019: 557−561. |
38 | 李江, 冯存前, 王义哲, 等. 基于深度卷积神经网络的弹道目标微动分类[J]. 空军工程大学学报(自然科学版), 2019, 20 (4): 97- 104. |
LI J, FENG C Q, WANG Y Z, et al. Micro-motion classification of ballistic targets based on deep concoultional neural network[J]. Journal of Airforce Engineering University (Natural Science Edition), 2019, 20 (4): 97- 104. | |
39 | XU G G, YIN H C, DONG C Z. Micro-motion forms classification of space cone-shaped target based on convolution neural network[J]. Applied Computational Electromagnetics Society Journal, 2020, 35 (1): 64- 71. |
40 | 李鹏, 冯存前, 许旭光, 等. 一种利用贝叶斯优化的弹道目标微动分类网络[J]. 西安电子科技大学学报, 2021, 48 (5): 139- 148. |
LI P, FENG C Q, XU X G, et al. Ballistic target fretting classification network based on Bayesian optimization[J]. Journal of Xidian University, 2021, 48 (5): 139- 148. | |
41 |
JUNG K, LEE J I, KIM N, et al. Classification of space objects by using deep learning with micro-Doppler signature images[J]. Sensors, 2021, 21 (13): 4365.
doi: 10.3390/s21134365 |
42 | 李江, 冯存前, 王义哲, 等. 基于AlexNet-BiLSTM网络的锥体目标微动分类[J]. 信号处理, 2019, 35 (11): 1835- 1843. |
LI J, FENG C Q, WANG Y Z, et al. Micro-motion classification of cone targets based on AlexNet-BiLSTM network[J]. Journal of Signal Processing, 2019, 35 (11): 1835- 1843. | |
43 | HAN L X, FENG C Q. Micro-Doppler-based space target recognition with a one-dimensional parallel network[J]. International Journal of Antennas and Propagation, 2020, 2020, 8013802. |
44 | WANG Y, FENG C, ZHANG Y, et al. Space precession target classification based on radar high-resolution range profiles[J]. International Journal of Antennas and Propagation, 2019, 2019, 8151620. |
45 | 徐高贵, 殷红成, 袁莉, 等. 一种基于卷积神经网络的HRRP序列空间目标识别方法[J]. 中国传媒大学学报(自然科学版), 2019, 26 (3): 40- 44. |
XU G G, YIN H C, YUAN L, et al. Spatial target recognition method of HRRP sequence based on convolutional neural network[J]. Journal of Communication University of China (Science and Technology), 2019, 26 (3): 40- 44. | |
46 | 向前, 王晓丹, 李睿, 等. 基于DCNN的弹道中段目标HRRP图像识别[J]. 系统工程与电子技术, 2020, 42 (11): 2426- 2433. |
XIANG Q, WANG X D, LI R, et al. HRRP image recognition of midcourse ballistic targets based on DCNN[J]. Systems Engineering and Electronics, 2020, 42 (11): 2426- 2433. | |
47 | WANG Y Z, FENG C Q, HU X W, et al. Classification of space micromotion targets with similar shapes at low SNR[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 3504305. |
48 | LI Y X, FAN W W, SHI X R, et al. Multi-mode fusion and classification method for space targets based on convolutional neural network[C]//Proc. of the 6th Asia-Pacific Conference on Synthetic Aperture Radar, 2019. |
49 |
TIAN X D, BAI X R, XUE R H, et al. Fusion recognition of space targets with micro-motion[J]. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (4): 3116- 3125.
doi: 10.1109/TAES.2022.3145303 |
50 | 李江, 冯存前, 王义哲, 等. 基于深度学习的弹道目标智能分类[J]. 系统工程与电子技术, 2020, 42 (6): 1226- 1234. |
LI J, FENG C Q, WANG Y Z, et al. Intelligent classification of ballistic targets based on deep leaning[J]. Systems Engineering and Electronics, 2020, 42 (6): 1226- 1234. | |
51 | 田旭东, 白雪茹, 周峰. 基于稀疏自编码器的空间微动目标融合识别方法[J]. 电子与信息学报, 2023, 45 (12): 4336- 4344. |
TIAN X D, BAI X R, ZHOU F. Fusion recognition of space targets with micro-motion based on a sparse autoencoder[J]. Journal of Electronics & Information Technology, 2023, 45 (12): 4336- 4344. | |
52 | ZHANG Y P, ZHANG Q, KANG L, et al. End-to-end recognition of similar space cone-cylinder targets based on complex-valued coordinate attention networks[J]. IEEE Trans. on Geoscience and Remote Sensing, 2022, 60, 5106214. |
53 | ZHANG Y P, ZHANG L, KANG L, et al. Space target classification with corrupted HRRP sequences based on temporal-spatial feature aggregation network[J]. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61, 5100618. |
54 |
ZHANG Y P, GUAN J Y, WANG H B, et al. Generalized zero-shot space target recognition based on global-local visual feature embedding network[J]. Remote Sensing, 2023, 15 (21): 5156.
doi: 10.3390/rs15215156 |
55 |
ZHANG Y P, XIE Y, KANG L, et al. Feature-level fusion recognition of space targets with composite micromotion[J]. IEEE Trans. on Aerospace and Electronic Systems, 2024, 60 (1): 934- 951.
doi: 10.1109/TAES.2023.3331339 |
56 | 陈健. 基于深度学习的窄带雷达弹头目标识别关键技术研究[D]. 长沙: 国防科技大学, 2019. |
CHEN J. Research on narrow band radar true-false discrimination based on deep learning[D]. Changsha: National University of Defense Technology, 2019. | |
57 |
张文鹏, 黎湘, 刘永祥. 雷达目标微动表征、估计与识别研究[J]. 中国科学: 信息科学, 2023, 53 (8): 1469- 1489.
doi: 10.1360/SSI-2023-0040 |
ZHANG W P, LI X, LIU Y X. Research on representation, estimation and recognition for radar targets with micro-motion[J]. SCIENTIA SINICA Informationis, 2023, 53 (8): 1469- 1489.
doi: 10.1360/SSI-2023-0040 |
|
58 | LIU L H, GHOGHO M, MCLERNON D, et al. Ballistic missile precessing frequency extraction based on maximum likelihood estimation[C]//Proc. of the European Signal Processing Conference, 2010: 1562−1566. |
59 |
LIU L H, GHOGHO M. MCLERNON D, et al. Pseudo-maximum likelihood estimation of ballistic missile precession frequency[J]. Signal Processing, 2012, 92 (9): 2018- 2028.
doi: 10.1016/j.sigpro.2012.01.011 |
60 | 赵振冲, 王晓丹, 宋亚飞, 等. 基于DAMDF的弹道导弹进动周期提取[J]. 现代雷达, 2014, 36 (11): 62- 66. |
ZHAO Z C, WANG X D, SONG Y F, et al. A precession period extraction method of ballistic missile based on DAMDF[J]. Modern Radar, 2014, 36 (11): 62- 66. | |
61 | 孙静. 一种基于改进CAMDF的进动周期估计方法[J]. 科学技术与工程, 2015, 15 (27): 152- 158. |
SUN J. Estimation of precession period based on improved circular AMDF[J]. Science Technology and Engineering, 2015, 15 (27): 152- 158. | |
62 | JIN J W, RUAN H L, SUN B. Micro-Doppler period estimation from ballistic targets based on circular average magnitude difference coefficients[C]//Proc. of the International Conference on Information Science, Parallel and Distributed Systems, 2020: 69−73. |
63 | 张瑞国, 李春雨, 郝云胜. 一种RCS序列多周期估计方法[J]. 现代雷达, 2020, 42 (2): 36- 41. |
ZHANG R G, LI C Y, HAO Y S. An estimation method for multi-period RCS sequences[J]. Modern Radar, 2020, 42 (2): 36- 41. | |
64 | 戴军. 弹道导弹中段目标识别算法研究[D]. 南京: 南京大学, 2014. |
DAI J. Research on ballistic missile mid-course target recognition algorithm[D]. Nanjing: Nanjing University, 2014. | |
65 | 俞万友. 弹道导弹中段真假弹头识别技术[D]. 上海: 上海交通大学, 2013. |
YU W Y. Recognition of true and false ballistic warheads in mid-course[D]. Shanghai: Shanghai Jiao Tong University, 2013. | |
66 | 赵炳秋, 阳洪灿, 吴垚. 弹道中段导弹目标进动特征提取方法研究[J]. 电光与控制, 2016, 23 (7): 44- 49. |
ZHAO B Q, YANG H C, WU Y. On precession feature extraction methods of ballistic missiles in midcourse phase[J]. Electronics Optics & Control, 2016, 23 (7): 44- 49. | |
67 | 冯德军, 刘进, 丹梅. 弹道中段目标RCS周期特性及其估计方法[J]. 宇航学报, 2008, 29 (1): 362- 365. |
FENG D J, LIU J, DAN M. RCS periodicity of ballistic target in midcourse and its estimation algorithms[J]. Journal of Astronautics, 2008, 29 (1): 362- 365. | |
68 | LI C W, XIE B, PEI Y. A RCS periodicity extraction algorithm for ballistic target[C]//Proc. of the International Conference on Image, Vision and Intelligent Systems, 2021: 1207−1216. |
69 | 寇鹏, 牛威, 张瑞. 一种空间目标翻滚周期估计的新方法[J]. 宇航学报, 2014, 35 (3): 356- 361. |
KOU P, NIU W, ZHANG R. A new method for estimating rolling peroid of space target[J]. Journal of Astronautics, 2014, 35 (3): 356- 361. | |
70 | 赵燕, 龙桂铃. 一种改进的复合运动空间目标微动周期估计方法[J]. 电子测量与仪器学报, 2020, 34 (2): 60- 66. |
ZHAO Y, LONG G L. Improved micro-motion period estimation method for space targets with compound motion[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34 (2): 60- 66. | |
71 | 张仕元. 基于三角函数拟合的RCS序列进动周期估计[J]. 电子与信息学报, 2014, 36 (6): 1389- 1393. |
ZHANG S Y. Procession period estimation of RCS sequences based on trigonometric function fitting[J]. Journal of Electronics & Information Technology, 2014, 36 (6): 1389- 1393. | |
72 | 黄小红, 姜卫东. 空间目标RCS序列周期性判定与提取[J]. 航天电子对抗, 2005, 21 (2): 29- 30. |
HUANG X H, JIANG W D. Periodic determination and extraction of RCS sequence for space targets[J]. Aerospace Electronic Warfare, 2005, 21 (2): 29- 30. | |
73 | 康猛, 王春花, 郝明, 等. 弹道目标进动周期特征提取研究[J]. 现代雷达, 2010, 32 (11): 29- 32. |
KANG M, WANG C H, HAO M, et al. A study on precession period extraction method of ballistic targets[J]. Modern Radar, 2010, 32 (11): 29- 32. | |
74 | 姚辉伟. 窄带雷达中段目标识别技术研究[D]. 长沙: 国防科学技术大学, 2014. |
YAO H W. Ballistic midcourse target recognition technique based on narrowband radar information[D]. Changsha: National University of Defense Technology, 2014. | |
75 | 詹武平, 陈剑军, 刘利军. 利用雷达窄带RCS频域特性提取锥形目标进动参数[J]. 微型电脑应用, 2015, 31 (3): 54- 56. |
ZHAN W P, CHEN J J, LIU L J. Precession parameters extraction method for the target based on frequency character of radar narrow RCS[J]. Microcomputer Applications, 2015, 31 (3): 54- 56. | |
76 | 陈行勇, 黎湘, 郭桂蓉, 等. 微进动弹道导弹目标雷达特征提取[J]. 电子与信息学报, 2006, 28 (4): 643- 646. |
CHEN H Y, LI X, GUO G R, et al. Radar feature extraction of micro-precession ballistic missile warhead[J]. Journal of Electronics & Information Technology, 2006, 28 (4): 643- 646. | |
77 | 刘永祥, 黎湘, 庄钊文. 空间目标进动特性及在雷达识别中的应用[J]. 自然科学进展, 2004, 14 (11): 122- 125. |
LIU Y X, LI X, ZHUANG Z W. Precession characteristics of space objects and their application in radar recognition[J]. Progress in Natural Science, 2004, 14 (11): 122- 125. | |
78 | 金文彬, 刘永祥, 任双桥, 等. 锥体目标空间进动特性分析及其参数提取[J]. 宇航学报, 2004, 25 (4): 408- 410. |
JIN W B, LIU Y X, REN S Q, et al. Character analyzing of spatial precession for cone and its parameter extracting[J]. Journal of Astronautics, 2004, 25 (4): 408- 410. | |
79 | LEI X H, FU X J, WANG C, et al. Statistical feature selection of narrowband RCS sequence based on greedy algorithm[C]//Proc. of the IEEE CIE International Conference on Radar, 2011: 1664−1667. |
80 | TANG W B, YU L, WEI Y S, et al. Radar target recognition of ballistic missile in complex scene[C]//Proc. of the IEEE International Conference on Signal, Information and Data Processing, 2019. |
81 | 于兴伟, 张学文, 侯鑫宇, 等. 基于窄带RCS数据的低速旋转空间目标识别研究[J]. 现代雷达, 2022, 44 (7): 75- 81. |
YU X W, ZHANG X W, HOU X Y, et al. A study on low speed rotating space target identification based on narrow band RCS series[J]. Modern Radar, 2022, 44 (7): 75- 81. | |
82 | XIANG X, XU X J. Feature extraction for radar target recognition using time sequences of radar cross section measurements[C]//Proc. of the 6th International Congress on Image and Signal Processing, 2013: 1583−1587. |
83 | ZHAO A J, NIU W, GUO L. Recognition techniques and feature extraction for space targets based on RCS[C]//Proc. of the 27th Chinese Control Conference, 2008: 426−429. |
84 | CHEN V C, LI F Y, HO S S, et al. Micro-Doppler effect in radar: phenomenon, model, and simulation study[J]. IEEE Trans. on Aerospace and Electronic Systems, 2006, 42 (1): 2- 21. |
85 | 曹文杰. 空间锥体目标微多普勒提取与参数估计[D]. 西安: 西安电子科技大学, 2014. |
CAO W J. Micro-Doppler extraction and parameter estimation of the space cone-shaped target[D]. Xi’an: Xidian University, 2014. | |
86 | 韩勋, 杜兰, 刘宏伟. 基于窄带微多普勒调制的锥体目标参数估计[J]. 电子与信息学报, 2015, 37 (4): 961- 968. |
HAN X, DU L, LIU H W. Parameter estimation of cone-shaped target based on narrowband micro-Doppler modulation[J]. Journal of Electronics & Information Technology, 2015, 37 (4): 961- 968. | |
87 | WU L L, XIE Y J, XU D P, et al. Ballistic missile precession frequency extraction based on the Viterbi & Kalman algorithm[C]//Proc. of the Symposium on Multispectral Image Processing and Pattern Recognition, 2015. |
88 |
REN K, DU L, LU X F, et al. Instantaneous frequency estimation based on modified Kalman filter for cone-shaped target[J]. Remote Sensing, 2020, 12 (17): 2726.
doi: 10.3390/rs12172726 |
89 |
XU X G, FENG C Q, HE S S. A method for the micro-motion signal separation and micro-Doppler extraction for the space precession target[J]. IEEE Access, 2020, 8, 130392- 130404.
doi: 10.1109/ACCESS.2020.3008480 |
90 |
AI X F, XU Z M, WU Q H, et al. Parametric representation and application of micro-Doppler characteristics for cone-shaped space targets[J]. IEEE Sensors Journal, 2019, 19 (24): 11839- 11849.
doi: 10.1109/JSEN.2019.2937995 |
91 |
LEI P, SUN J P, WANG J, et al. Micromotion parameter estimation of free rigid targets based on radar micro-Doppler[J]. IEEE Trans. on Geoscience and Remote Sensing, 2012, 50 (10): 3776- 3786.
doi: 10.1109/TGRS.2012.2185244 |
92 |
LI G, VARSHNEY P K. Micro-Doppler parameter estimation via parametric sparse representation and pruned orthogonal matching pursuit[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7 (12): 4937- 4948.
doi: 10.1109/JSTARS.2014.2318596 |
[1] | 闫小伟, 凌冲, 石胜斌. 地表未爆子弹药快速检测系统设计与实现[J]. 系统工程与电子技术, 2025, 47(8): 2639-2645. |
[2] | 张琬滢, 高由兵, 李泽一, 李鹏飞, 张伟. 基于双路径特征融合网络的背景信号抑制算法[J]. 系统工程与电子技术, 2025, 47(7): 2406-2413. |
[3] | 张新征, 闫梦可, 朱晓林. 噪声伪标签容忍的半监督SAR目标识别[J]. 系统工程与电子技术, 2025, 47(6): 1796-1805. |
[4] | 邵凯, 李浩刚, 梁燕, 宁婧, 陈戊. 跨尺度特征融合的遥感微小目标检测算法[J]. 系统工程与电子技术, 2025, 47(5): 1421-1431. |
[5] | 姜智杰, 宋恒, 胡楠, 段兰茜, 曹平. 隧道环境毫米波雷达目标识别与分类算法[J]. 系统工程与电子技术, 2025, 47(5): 1453-1460. |
[6] | 聂千祁, 沙明辉, 朱应申, 王崇宇, 崔念强. 基于盲源分离结合奇异谱分析的雷达多分量信号识别方法[J]. 系统工程与电子技术, 2025, 47(4): 1168-1175. |
[7] | 袁磊, 杨艳娟, 郭毅, 戴鹏. 相关噪声下基于深度学习的LDPC码码率半盲识别算法[J]. 系统工程与电子技术, 2025, 47(4): 1335-1345. |
[8] | 沈夏闰, 李若楠, 张昊田. 基于CVAE-LSTM的服务器KPI异常检测[J]. 系统工程与电子技术, 2025, 47(3): 1019-1027. |
[9] | 李开明, 代肖楠, 张袁鹏, 姚佳文, 罗迎. 基于动态模态分解的弹道目标平动补偿与微动特征提取方法[J]. 系统工程与电子技术, 2025, 47(2): 451-462. |
[10] | 刘晓琳, 郭梦娇, 李卓. Dueling DQN优化下的航班延误自适应图卷积循环网络预测方法[J]. 系统工程与电子技术, 2025, 47(2): 568-579. |
[11] | 付卫红, 张鑫钰, 刘乃安. 基于多尺度融合神经网络的同频同调制单通道盲源分离算法[J]. 系统工程与电子技术, 2025, 47(2): 641-649. |
[12] | 蔡伟, 王鑫, 蒋昕昊, 杨志勇, 陈栋. 基于解耦的小样本目标检测方法研究[J]. 系统工程与电子技术, 2024, 46(9): 2941-2950. |
[13] | 陈晓萱, 徐书文, 胡绍海, 马晓乐. 基于卷积与自注意力的红外与可见光图像融合[J]. 系统工程与电子技术, 2024, 46(8): 2641-2649. |
[14] | 汪强龙, 高晓光, 吴必聪, 胡子剑, 万开方. 受限玻尔兹曼机及其变体研究综述[J]. 系统工程与电子技术, 2024, 46(7): 2323-2345. |
[15] | 孙先涛, 江汪洋, 陈文杰, 陈伟海, 智亚丽. 基于感兴趣区域的物体抓取位姿检测[J]. 系统工程与电子技术, 2024, 46(6): 1867-1877. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||