系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (7): 2098-2109.doi: 10.12305/j.issn.1001-506X.2025.07.03
• 电子技术 • 上一篇
连家威, 张晓林, 颜品, 孙溶辰
收稿日期:
2024-04-25
出版日期:
2025-07-16
发布日期:
2025-07-22
通讯作者:
张晓林
作者简介:
连家威(2000—), 男, 硕士研究生, 主要研究方向为调制识别、小波阈值降噪基金资助:
Jiawei LIAN, Xiaolin ZHANG, Pin YAN, Rongchen SUN
Received:
2024-04-25
Online:
2025-07-16
Published:
2025-07-22
Contact:
Xiaolin ZHANG
摘要:
为了提高低信噪比下采样率受限且中心频率未知的通信信号质量, 提高识别性能, 本文实现中心频率的自适应估计并提出一种改进的小波降噪算法。中心频率估计部分利用11类通信信号在功率谱上的差异实现粗分类, 基于不同分类结果对频率居中法进行改进以实现中心频率的估计。改进的小波降噪算法一方面针对软硬阈值函数存在的问题提出一种参数可调且连续的改进小波阈值函数; 另一方面采用小波能量比刻画不同中心频率的通信信号小波系数能量分布, 根据大小对小波系数采取不同的处理方法。最后, 针对11类通信信号, 在[-10, 10] dB的信噪比范围内进行调制识别实验。仿真结果表明, 所提降噪算法对11类通信信号都有显著的降噪效果, 在[-10, 0] dB的信噪比范围内相较于未降噪时的信号平均识别率提升了10%~40%。
中图分类号:
连家威, 张晓林, 颜品, 孙溶辰. 基于小波能量比和改进阈值函数的通信信号降噪算法[J]. 系统工程与电子技术, 2025, 47(7): 2098-2109.
Jiawei LIAN, Xiaolin ZHANG, Pin YAN, Rongchen SUN. Communication signal denoising algorithm based on wavelet energy ratio and improved threshold function[J]. Systems Engineering and Electronics, 2025, 47(7): 2098-2109.
表4
不同中心频率fc下4种处理方法对比"
处理方法 | fc=1 100 Hz | fc=1 700 Hz | |||||||
[-10, -5] | [-4, 0] | [ | [ | [-10, -5] | [-4, 0] | [ | [ | ||
处理1 | 2.96/0.70 | 2.93/0.37 | 2.87/0.20 | 2.79/0.11 | 3.58/0.82 | 3.54/0.43 | 3.45/0.23 | 3.21/0.12 | |
处理2 | 7.34/1.39 | 5.23/0.58 | 3.54/0.24 | 2.68/0.11 | 8.09/1.47 | 6.42/0.67 | 3.51/0.24 | -0.51/-0.01 | |
处理3 | 6.12/1.22 | 5.59/0.61 | 4.97/0.31 | 4.39/0.16 | 6.03/1.25 | 6.00/0.64 | 5.15/0.32 | 3.43/0.13 | |
本文方法 | 7.71/1.42 | 6.87/0.70 | 5.92/0.36 | 4.87/0.17 | 8.09/1.47 | 6.42/0.67 | 5.32/0.33 | 3.40/0.13 |
32 | 刘子昌, 白永生, 贾希胜. 基于改进小波阈值的自行火炮信号降噪方法研究[J]. 火炮发射与控制学报, 2024, 45 (1): 1-9, 22. |
LIU Z C , BAI Y S , JIA X S . Research on denoising method of self-propelled artillery signal based on improved wavelet threshold[J]. Journal of Gun Launch and Control, 2024, 45 (1): 1-9, 22. | |
33 | SUN K Z, LU Y C, HUANG L S, et al. Wavelet denoising method based on improved threshold function[C]//Proc. of the IEEE 10th Joint International Information Technology and Artificial Intelligence Conference, 2022, 10: 1402-1406. |
1 | SOBOLEWSKI S, ADAMS W L, SANKAR R. Recognition of modern modulated waveforms with applications to ABMS and VDATS test program set development[C]//Proc. of the IEEE AUTOTESTCON, 2022. |
2 | XIAO W S , LUO Z Q , HU Q . A review of research on signal modulation recognition based on deep learning[J]. Electronics, 2022, 11 (17): 2764. |
3 | WANG T G , YANG G S , CHEN P H , et al. A survey of applications of deep learning in radio signal modulation recognition[J]. Applied Sciences, 2022, 12 (23): 12052. |
4 | ZHANG R , HE C B , JING L Y , et al. A modulation recognition system for underwater acoustic communication signals based on higher-order cumulants and deep learning[J]. Journal of Marine Science and Engineering, 2023, 11 (8): 1632. |
5 | WANG S, YUE J Y, LU J P, et al. Application of high-order cumulant based on the transient sequence in modulation recognition[C]//Proc. of the 5th International Conference on Frontiers Technology of Information and Computer, 2023: 268-273. |
6 | HE Y L, WU H, ZHENG Q H, et al. A blind modulation classification method based on decision tree and high order cumulants[C]//Proc. of the International Conference on Applications in Electronics Pervading Industry, Environment and Society, 2022: 312- 319. |
7 | 阮光鑫, 柳征. 基于模糊熵的连续相位调制识别算法[J]. 太赫兹科学与电子信息学报, 2024, 22 (7): 710- 715. |
RUAN G X , LIU Z . Continuous phase modulation recognition algorithm based on fuzzy entropy[J]. Journal of Terahertz Science and Electronic Information Technology, 2024, 22 (7): 710- 715. | |
8 | 谢爱平, 张雨生, 刘莹, 等. 基于瞬时特征参数和功率谱熵的联合调制识别[J]. 电子科技, 2022, 35 (11): 104- 110. |
XIE A P , ZHANG Y S , LIU Y , et al. Joint modulation recognition based on instantaneous characteristic parameters and power spectral entropy[J]. Electronic Science and Technology, 2022, 35 (11): 104- 110. | |
9 | GUO Z Y, MIAO L, LIN Y F. An approach based on multientropy and artificial intelligence for communication modulation signal identification[C]//Proc. of the IEEE International Confe-rence on Image Processing and Computer Applications, 2023: 1650-1654. |
10 | AN P F, SUN Y W, LI X Y. Communication modulation recognition technology based on wavelet entropy and decision tree[C]//Proc. of the 2nd International Seminar on Artificial Intelligence, Networking and Information Technology, 2021: 379-384. |
11 | DONG S L, LI Z P, ZHAO L F. A modulation recognition algorithm based on cyclic spectrum and SVM classification[C]//Proc. of the IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference, 2020: 2123-2127. |
12 | HUANG T Y, XIN F M, WANG J C. Communication signal modulation recognition based on cyclic spectrum features and bagged decision tree[C]//Proc. of the 8th International Confe-rence on Electronic Technology and Information Science, 2023, 12715: 179-188. |
13 | GAO R, WNG J, WANG J, et al. Modulation recognition method of cyclic stationary signal based on graph theory[C]//Proc. of the International Conference on Ubiquitous Communication, 2023: 171-175. |
14 | LI H F, LIAO Y. Research on signal modulation type recognition based on cyclic spectrum in internet of things[C]//Proc. of the IEEE 6th International Conference on Signal and Image Processing, 2021: 680-686. |
15 | LI Z , YAO X T , ZHANG C , et al. Vibration signal noisereduction method of slewing bearings based on the hybrid reinforcement chameleon swarm algorithm, variate mode decomposition, and wavelet threshold (HRCSA-VMD-WT) integrated model[J]. Sensors, 2024, 24 (11): 3344. |
16 | WU J Z, LIN J J, GAO Z J, et al. Removing white noise in partial discharge signal based on wavelet entropy and improved threshold function[C]//Proc. of the International Conference on Power System Technology, 2018: 3924-3928. |
17 | LI X X , LIAO K X , HE G X , et al. Research on improved wavelet threshold denoising method for non-contact force and magnetic signals[J]. Electronics, 2023, 12 (5): 1244. |
18 | ZHU G W , LIU B Y , YANG P , et al. Image denoising method based on improved wavelet threshold algorithm[J]. Multimedia Tools and Applications, 2024, 83 (26): 67997- 68001. |
19 | JIN X C, YAN C L. Research on denoising method for improving wavelet threshold function based on sparrow optimization algorithm[C]//Proc. of the 7th International Conference on Advanced Algorithms and Control Engineering, 2024: 638-641. |
20 | ZHANG Y Y , YANG Z X , DU X L , et al. A new method for denoising underwater acoustic signals based on EEMD, correlation coefficient, permutation entropy, and wavelet threshold denoising[J]. Journal of Marine Science and Application, 2024, 23 (1): 222- 237. |
21 | 谭晓衡, 鄢海燕, 苏萌. 基于自适应小波消噪的数字调制识别优化算法[J]. 电子与信息学报, 2011, 33 (2): 466- 469. |
TAN X H , YAN H Y , SU M . Optimization algorithm for digital modulation recognition based on adaptive wavelet denoising[J]. Journal of Electronics and Information Technology, 2011, 33 (2): 466- 469. | |
22 | ZHANG X Y, ZHANG R J. The technology research in decomposition and reconstruction of image based on two-dimensional wavelet transform[C]//Proc. of the 9th International Conference on Fuzzy Systems and Knowledge Discovery, 2012: 1998-2000. |
23 | XIE W W , HU S , YU C , et al. Deep learning in digital modulation recognition using high-order cumulants[J]. IEEE Access, 2019, 7, 63760- 63766. |
24 | LIU M Z, ZHAO Y, SHI L, et al. Research on recognition algorithm of digital modulation by higher order cumulants[C]//Proc. of the 4th International Conference on Instrumentation and Measurement, Computer, Communication and Control, 2014: 686-690. |
25 | TASWELL C . The what, how, and why of wavelet shrinkage denoising[J]. Computing in Science and Engineering, 2000, 2 (3): 12- 19. |
26 | 赵瑞珍, 宋国乡, 王红. 小波系数阈值估计的改进模型[J]. 西北工业大学学报, 2001, 19 (4): 625- 628. |
ZHAO R Z , SONG G X , WANG H . Improved model for threshold estimation of wavelet coefficients[J]. Journal of Northwestern Polytechnical University, 2001, 19 (4): 625- 628. | |
27 | 安佰强, 周强, 董旭明, 等. 数字通信信号载频实时估计算法与实现[J]. 电子世界, 2018, 18 (5): 66- 67. |
AN B Q , ZHOU Q , DONG X M , et al. Real time estimation algorithm and implementation of carrier frequency for digital communication signals[J]. Electronics World, 2018, 18 (5): 66- 67. | |
28 | ZHANG N N. The application of an improved wavelet threshold function in denoising of heart sound signal[C]//Proc. of the Chinese Control and Decision Conference, 2020: 1768-1772. |
29 | ARTHUR D, VASSILVITSKII S. k-means++: the advantages of careful seeding. SODA '07[C]//Proc. of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, 2007: 1027-1035. |
30 | WANG S Q. Classification and recognition of 6G spaceground integrated network modulation modes[C]//Proc. of the 5th International Conference on Applied Machine Learning, 2023: 26- 35. |
31 | WANG H , GUO L L , DOU Z , et al. A new method of cognitive signal recognition based on hybrid information entropy and D-S evidence theory[J]. Mobile Networks and Applications, 2018, 23 (4): 677- 685. |
[1] | 王海英, 张群英, 成文海, 董家铭, 刘小军. LPI雷达信号调制识别及参数估计研究进展[J]. 系统工程与电子技术, 2024, 46(6): 1908-1924. |
[2] | 邹涵, 张天骐, 马焜然, 杨宗方. 基于多特征融合的MIMO-OFDM系统单-混信号调制识别算法[J]. 系统工程与电子技术, 2024, 46(4): 1456-1465. |
[3] | 金磊, 曾富华, 蒋友邦, 王媛. 大频率动态微弱MPSK信号高精度测频算法[J]. 系统工程与电子技术, 2024, 46(12): 3973-3980. |
[4] | 平嘉蓉, 李赛, 林云航. Alpha稳定分布噪声和多径干扰下的无人机集群MIMO信号调制识别[J]. 系统工程与电子技术, 2024, 46(11): 3920-3929. |
[5] | 邓志安, 王治国, 王盛鳌, 司伟建. 同步提取变换去噪的雷达信号调制识别方法[J]. 系统工程与电子技术, 2024, 46(10): 3334-3346. |
[6] | 赵正义, 侯颖妮. 基于TSVD的块稀疏重构雷达前视超分辨成像[J]. 系统工程与电子技术, 2023, 45(7): 2051-2059. |
[7] | 陈洋, 廖灿辉, 张锟, 刘建, 王鹏举. 基于自监督对比学习的信号调制识别算法[J]. 系统工程与电子技术, 2023, 45(4): 1200-1206. |
[8] | 汪锐, 张天骐, 安泽亮, 王雪怡, 方竹. 基于联合特征参数和一维CNN的MIMO-OFDM系统调制识别算法[J]. 系统工程与电子技术, 2023, 45(3): 902-912. |
[9] | 王宁, 吕晓德, 李苗苗. 低信噪比下非冗余阵列的无网格DOA估计[J]. 系统工程与电子技术, 2023, 45(2): 352-359. |
[10] | 龚佩, 李天昀, 章昕亮, 寸陈韬. 利用联合特征参数的卫星单-混信号调制识别[J]. 系统工程与电子技术, 2023, 45(2): 589-596. |
[11] | 翟茹萍, 张书衡, 平嘉蓉. 复杂多径环境下的无人机集群通信波形识别[J]. 系统工程与电子技术, 2023, 45(10): 3312-3320. |
[12] | 康颖, 赵治华, 吴灏, 李亚星, 孟进. 基于Deep SVDD的通信信号异常检测方法[J]. 系统工程与电子技术, 2022, 44(7): 2319-2328. |
[13] | 秦博伟, 蒋磊, 许华, 齐子森. 基于残差生成对抗网络的调制识别算法[J]. 系统工程与电子技术, 2022, 44(6): 2019-2026. |
[14] | 赵忠凯, 弓浩, 张然. 基于顺序统计滤波和二元积累的辐射源信号检测方法[J]. 系统工程与电子技术, 2022, 44(4): 1085-1092. |
[15] | 邵凯, 朱苗苗, 王光宇. 基于生成对抗与卷积神经网络的调制识别方法[J]. 系统工程与电子技术, 2022, 44(3): 1036-1043. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||