系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (12): 4212-4224.doi: 10.12305/j.issn.1001-506X.2025.12.33

• 通信与网络 • 上一篇    

基于数据投毒攻击的联邦学习安全防御策略

牟杨城(), 陈爱网, 陈桂茸, 徐继明, 严晓梅, 段炼   

  1. 空军工程大学信息与导航学院,陕西 西安 710077
  • 收稿日期:2024-11-20 修回日期:2025-01-22 出版日期:2025-05-23 发布日期:2025-05-23
  • 通讯作者: 陈爱网 E-mail:13170308389@163.com
  • 作者简介:牟杨城(1993—),女,硕士研究生,主要研究方向为指挥信息系统、网络信息安全及军事大数据研究
    陈桂茸(1980—),女,副教授,博士,主要研究方向为信息安全、数据挖掘和人工智能
    徐继明(1980—),男,讲师,硕士,主要研究方向为指挥信息系统、网络信息安全及军事大数据研究
    严晓梅(1981—),女,副教授,硕士,主要研究方向为信息安全、数据挖掘和人工智能
    段 炼(2001—),男,硕士研究生,主要研究方向为网络空间安全、大数据和人工智能

Security defense strategies for federated learning based on data poisoning attacks

Yangcheng MOU(), Aiwang CHEN, Guirong CHEN, Jiming XU, Xiaomei YAN, Lian DUAN   

  1. School of Information and Navigation,Air Force Engineering University,Xi’an 710077,China
  • Received:2024-11-20 Revised:2025-01-22 Online:2025-05-23 Published:2025-05-23
  • Contact: Aiwang CHEN E-mail:13170308389@163.com

摘要:

跨域数据共享使用面临安全和隐私保护威胁,联邦学习提供了很好的解决思路,但其分布式架构容易受到数据投毒攻击,降低模型准确率。针对这一问题,提出一种针对标签翻转攻击的数据投毒防御策略。首先,提取神经元离群梯度进行聚类分析;然后,比较簇密度大小检测恶意节点;最后,动态赋予疑似恶意节点较小权重完成联邦聚合。在不同数据集上的测试结果表明,本策略能够有效抵御标签翻转攻击,相较于目前主流算法具有更高的准确率和鲁棒性,在高密度投毒比例下仍表现出色,从而为跨域数据安全互联提供了一种新的思路。

关键词: 跨域数据安全共享, 联邦学习, 数据投毒, 标签翻转攻击, 神经网络, 离群梯度

Abstract:

Cross-domain data sharing is fraught with security and privacy protection threats, and federated learning offers a promising approach to address these issues. However, its distributed architecture is susceptible to data poisoning attacks, which can reduce model accuracy. To counter this problem, a data poisoning defense strategy specifically targeting label-flipping attacks is proposed. Firstly, neuron outlier gradients are extracted for clustering analysis. Then, malicious nodes are detected by comparing the density of clusters. Finally, a smaller weight is dynamically assigned to suspected malicious nodes to complete federated aggregation. Test results on various datasets demonstrate that our strategy can effectively defend against label-flipping attacks, achieving higher accuracy and robustness compared to current mainstream algorithms, and maintaining excellent performance even under high-density poisoning ratios. This provides a novel approach for ensuring the secure interconnection of cross-domain data.

Key words: cross-domain data secure sharing, federated learning, data poisoning, label-flipping attack, neural network, outlier gradients

中图分类号: