系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (12): 4117-4129.doi: 10.12305/j.issn.1001-506X.2025.12.24

• 制导、导航与控制 • 上一篇    

智能寻的制导律研究综述

唐进1,2, 王一书1,2, 梁彦刚1,2, 李昊键1,2, 黎克波1,2,*   

  1. 1. 国防科技大学空天科学学院,湖南 长沙 410073
    2. 太空系统运行与控制全国重点实验室,湖南 长沙 410073
  • 收稿日期:2024-12-17 修回日期:2025-02-10 出版日期:2025-05-23 发布日期:2025-05-23
  • 通讯作者: 黎克波
  • 作者简介:唐 进(1997—),男,博士研究生,主要研究方向为飞行器动力学与控制、深度强化学习
    王一书(2001—),女,硕士研究生,主要研究方向为导弹制导与控制
    梁彦刚(1979—),男,教授,博士,主要研究方向为飞行器总体设计与系统仿真、飞行器动力学与控制
    李昊键(1999—),男,博士研究生,主要研究方向为导弹制导与控制
  • 基金资助:
    国家自然科学基金(12472359,U2441205)资助课题

Research review of intelligent homing guidance law

Jin TANG1,2, Yishu WANG1,2, Yangang LIANG1,2, Haojian LI1,2, Kebo LI1,2,*   

  1. 1. College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
    2. State Key Laboratory of Space System Operation and Control,Changsha 410073,China
  • Received:2024-12-17 Revised:2025-02-10 Online:2025-05-23 Published:2025-05-23
  • Contact: Kebo LI

摘要:

对当前智能寻的制导律的研究进行总结,分析了传统制导方法中存在的系数选择不确定、剩余飞行时间估计不准确等实际问题;综述了基于深度学习、强化学习、迁移学习的单弹智能制导律及多弹协同智能制导律的研究现状;对未来智能制导律的研究方向进行讨论和展望,强调智能制导律要从智能方法引入的必要性、神经网络设计的确定性、数据驱动的可靠性、多智能体协同制导的复杂性及自主智能制导的关键技术入手,开展更加深入的研究,为未来智能制导方法的设计提供思路。

关键词: 智能制导律, 神经网络, 强化学习, 滑模控制, 迁移学习, 协同制导

Abstract:

This paper summarizes the current state of intelligent seeking guidance laws, analyzing practical issues in traditional guidance methods, such as uncertainty in coefficient selection and inaccurate estimates of remaining flight time. It reviews research on single-missile intelligent guidance laws based on deep learning, reinforcement learning, and transfer learning, as well as multi-missile cooperative intelligent guidance laws. This paper discusses and anticipates future research directions for intelligent guidance laws. Emphasis is placed on in-depth research in respects of the necessity of incorporating intelligent methodologies, ensuring the determinacy of neural network designs, improving the reliability of data-driven approaches, addressing the complexities of multi-agent cooperative guidance, and advancing key technologies for autonomous intelligent guidance, to provide insights for future intelligent guidance method development.

Key words: intelligent guidance law, neural network, reinforcement learning, sliding mode control, transfer learning, cooperative guidance

中图分类号: