

系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (12): 4117-4129.doi: 10.12305/j.issn.1001-506X.2025.12.24
• 制导、导航与控制 • 上一篇
唐进1,2, 王一书1,2, 梁彦刚1,2, 李昊键1,2, 黎克波1,2,*
收稿日期:2024-12-17
修回日期:2025-02-10
出版日期:2025-05-23
发布日期:2025-05-23
通讯作者:
黎克波
作者简介:唐 进(1997—),男,博士研究生,主要研究方向为飞行器动力学与控制、深度强化学习基金资助:Jin TANG1,2, Yishu WANG1,2, Yangang LIANG1,2, Haojian LI1,2, Kebo LI1,2,*
Received:2024-12-17
Revised:2025-02-10
Online:2025-05-23
Published:2025-05-23
Contact:
Kebo LI
摘要:
对当前智能寻的制导律的研究进行总结,分析了传统制导方法中存在的系数选择不确定、剩余飞行时间估计不准确等实际问题;综述了基于深度学习、强化学习、迁移学习的单弹智能制导律及多弹协同智能制导律的研究现状;对未来智能制导律的研究方向进行讨论和展望,强调智能制导律要从智能方法引入的必要性、神经网络设计的确定性、数据驱动的可靠性、多智能体协同制导的复杂性及自主智能制导的关键技术入手,开展更加深入的研究,为未来智能制导方法的设计提供思路。
中图分类号:
唐进, 王一书, 梁彦刚, 李昊键, 黎克波. 智能寻的制导律研究综述[J]. 系统工程与电子技术, 2025, 47(12): 4117-4129.
Jin TANG, Yishu WANG, Yangang LIANG, Haojian LI, Kebo LI. Research review of intelligent homing guidance law[J]. Systems Engineering and Electronics, 2025, 47(12): 4117-4129.
表1
DRL主要算法"
| 算法类别 | 算法名称(时间) | 主要改进及其优势 | 适用场景 | 制导领域的应用 |
| 基于值函数 | DQN(2013) | 采用经验回放机制和两个Q网络, 训练稳定;可结合卷积神经网络 | 高维状态空间,离散动作空间 | 文献[ |
| Double DQN (2016) | 解耦目标Q值计算评估和动作选择, 解决Q值过度估计问题 | 高维状态空间,离散动作空间, DQN过估计时使用 | 文献[ 学习制导指令 | |
| Dueling DQN (2016) | 引入价值函数和优势函数优化网络结构, 强化学习算法更好结合 | 高维状态空间,离散动作空间, 状态空间变化大时使用 | — | |
| D3QN(2018) | 现有改进基础上再引入优先经验回放机制, 训练稳定且收敛速度快 | 高维状态空间,离散动作空间 | — | |
| Rainbow DQN (2018) | 整合6种改进形式,训练效果明显提升, 适用于多种场景 | 高维状态空间,离散动作空间, 需高性能的DQN变体时使用 | — | |
| 基于策略梯度 | DDPG(2015) | 双网络基础上引入价值网络和策略网络 共4个,解决连续控制问题 | 连续动作空间,复杂控制问题, 需要确定性策略时使用 | 文献[ DDPG学习智能制导策略 |
| TRPO(2015) | 引入优势函数保证策略连续优势迭代, 提高数据采样效率 | 连续动作空间,复杂控制问题, 需要稳定训练时使用 | 文献[ 端对端的方式映射制导指令 | |
| A3C(2016) | 通过多个智能体并行探索训练, 缩短训练时间 | 离散或连续动作空间,大规模 问题,需分布式训练时使用 | 文献[ 导航比,获得新制导方法 | |
| PPO(2017) | TRPO基础上限制新旧策略更新幅度, 提升数据利用率,降低计算量 | 连续动作空间,复杂控制问题, 需高效稳定策略优化时使用 | 文献[ 基于PPO学习制导参数或制导指令 | |
| DPPO(2017) | 基于PPO可多线程并行训练, 避免参数震荡现象 | 连续动作空间,复杂控制问题, 适合多线程并行训练 | — | |
| TD3(2018) | 采用两套网络估计不同的Q值, 避免Q值的过高估计 | 连续动作空间,复杂控制问题, DDPG过估计问题时使用 | 文献[ 制导指令,提出新制导方法 |
表2
智能寻的制导方法主要研究和应用"
| 具体寻的 制导问题 | 参考文献 | 采用方法 | 主要工作和改进 | 改进制导律的效果 |
| 导弹剩余飞行 时间估计问题 | 文献[ | DNN、残差神经网络 | 预测模块引入神经网络模型估计剩余飞行时间 | 提高剩余飞行时间预测精度 实现时间角度控制制导 |
| 文献[ | ANN、反向传播(back propagation, BP)神经网络 | 采用ANN或BP网络建立剩余飞行时间映射网络 | 降低能量消耗提升控制精度 | |
| 文献[ | Fisher融合算法 | 基于数据驱动在线估计脱靶量和剩余飞行时间 | 提升计算效率和估计精度 | |
| 滑模制导的参数 估计和抖振问题 | 文献[ | 模糊RBF神经网络 | 神经网络对滑模变结构项的增益进行在线估计 | 对变结构项的自适应调节同时 减小系统抖振 |
| 文献[ | RBF神经网络 | 利用RBF网络估计目标运动信息和 变结构函数项 | 使制导律自适应参数变化并增强 系统的鲁棒性 | |
| 文献[ | RBF神经网络 | RBF网络引入二阶滑模面在线逼近有界不确定项 | 进一步提高制导精度 | |
| 最优控制问题 | 文献[ | 前馈神经网络 | 前馈神经网络建立飞行状态到 最优指令的映射关系 | 实现非线性最优制导指令的 毫秒量级实时生成 |
| 文献[ | DNN和偏置PN | DNN结合偏置PN设计最优终端制导方案 | 动态非线性情况下能平衡最优性、 实时性和冲击角约束 | |
| PN系数 选择问题 | 文献[ | Q-learning算法 | 基于Q-learning学习PN系数 | 自适应调整PN的导航比以获得最佳的制导策略 |
| 文献[ | SAC算法 | 基于SAC算法智能调参的自适应PN律 | 获得考虑脱靶量和能量损耗的 制导参数决策系统 | |
| 最优制导律的 参数估计问题 | 文献[ | PPO算法 | 基于PPO对最优制导律中的制导参数进行学习 | 有效降低燃料消耗并且具有 较好的制导精度 |
| 拦截机动 目标问题 | 文献[ | DQN、DDPG和TD3算法 | 基于DRL算法直接学习制导加速度 | 相比于传统的TPN具有更好的制导精度 |
| 文献[ | PPO算法和元学习技术 | 基于强化学习训练端到端无模型的制导策略 | 有效应用于大气层外机动目标的拦截制导 | |
| 监督学习制导 算法迁移问题 | 文献[ | 域对抗神经网络 | 基于神经网络学习不同任务场景共享底层信息 | 实现不同任务之间的制导方法快速迁移 |
| 多弹协同 制导问题 | 文献[ | TD3算法 | 利用TD3算法学习拦截场景下多飞行器协同策略 | 有效满足协同拦截和脱靶量的要求 |
| 文献[ | 多智能体深度强化 学习算法 | 分布式多智能体深度强化学习用于协同制导控制 | 能够扩展到其他具有更多集群和目标的 协同场景 |
| 1 | LU P. What is guidance[J]. Journal of Guidance, Control, and Dynamics, 2021, 44 (7): 1237- 1238. |
| 2 | 周荻. 寻的导弹新型导引规律[M]. 北京: 国防工业出版社, 2002. |
| ZHOU D. The new guidance law for seeking missiles[M]. Beijing: National Defense Industry Press, 2002. | |
| 3 | ZARCHAN P. Tactical and strategic missile guidance: an introduction[M]. 7th ed. Reston, Va: American Institute of Aeronautics and Astronautics, 2019. |
| 4 | ZARCHAN P. Advanced tactical and strategic missile guidance[M]. 7th ed. Reston, Va: American Institute of Aeronautics and Astronautics, 2019. |
| 5 | GUELMAN M. The closed-form solution of true proportional navigation[J]. IEEE Trans. on Aerospace and Electronic Systems, 1976 (4): 472- 482. |
| 6 |
GHOSE D. True proportional navigation with maneuvering target[J]. IEEE Trans. on Aerospace and Electronic Systems, 1994, 30 (1): 229- 237.
doi: 10.1109/7.250423 |
| 7 | 白志会, 黎克波, 苏文山, 等. 现实真比例导引拦截任意机动目标捕获区域[J]. 航空学报, 2020, 41 (8): 338- 348. |
| BAI Z H, LI K B, SU W S, et al. Realistic proportional guidance interception of any maneuvering target capture area[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (8): 338- 348. | |
| 8 |
CHEN X T, WANG J Z. Optimal control based guidance law to control both impact time and impact angle[J]. Aerospace Science and Technology, 2019, 84, 454- 463.
doi: 10.1016/j.ast.2018.10.036 |
| 9 | 苏茂. 基于微分对策的攻防对抗末段制导方法研究[D]. 武汉: 华中科技大学, 2020. |
| SU M. Research on terminal guidance method for offensive and defensive confrontation based on differential game theory[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
| 10 | LI K B, CHEN L, BAI X Z, et al. Differential geometric modeling of guidance problem for interceptors[J]. Science China Technological Sciences, 2011, 41 (9): 1205- 1217. |
| 11 | 刘远贺, 黎克波, 何绍溟, 等. 基于最优误差动力学的变速导弹飞行路程控制制导律[J]. 航空学报, 2023, 44 (7): 168- 181. |
| LIU Y H, LI K B, HE S M, et al. Guidance law for variable speed missile flight path control based on optimal error dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (7): 168- 181. | |
| 12 | LI K B, SHIN H S, TSOURDOS A. Capturability of a sliding mode guidance law with finite time convergence[J]. IEEE Trans. on Aerospace and Electronic Systems, 2020, 56 (3): 2312- 2325. |
| 13 | LU P. Introducing computational guidance and control[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (2): 241- 246. |
| 14 | 周聪, 闫晓东, 唐硕, 等. 大气层内模型预测静态规划拦截中制导[J]. 航空学报, 2021, 42 (11): 241- 246. |
| ZHOU C, YAN X D, TANG S, et al. In-atmosphere model prediction of static planning interception midguidance[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (11): 241- 246. | |
| 15 | LU P. Deeper learning needed from machine learning[J]. Journal of Guidance, Control, and Dynamics, 2024, 47 (1): 1- 4. |
| 16 | WANG C Y, DONG W, WANG J, et al. Impact-angle-constrained cooperative guidance for salvo attack[J]. Journal of Guidance, Control, and Dynamics, 2022, 45 (4): 684- 703. |
| 17 | TEKIN R, ERER K S. Impact time and angle control against moving targets with look angle shaping[J]. Journal of Guidance, Control, and Dynamics, 2020, 43 (5): 1020- 1025. |
| 18 |
JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Trans. on Control Systems Technology, 2006, 14 (2): 260- 266.
doi: 10.1109/TCST.2005.863655 |
| 19 | LAM V. Time-to-go estimate for missile guidance[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference and Exhibit, 2005. |
| 20 | GUO Y H, LI X, ZHANG H J, et al. Data-driven method for impact time control based on proportional navigation guidance[J]. Journal of Guidance, Control, and Dynamics, 2020, 43 (5): 955- 966. |
| 21 | 刘子超, 王江, 何绍溟. 基于深度学习的时间角度控制制导律[J]. 系统工程与电子技术, 2023, 45 (11): 3579- 3587. |
| LIU Z C, WANG J, HE S M. Time angle control guidance law based on deep learning[J]. Systems Engineering and Electronics, 2023, 45 (11): 3579- 3587. | |
| 22 |
LIU Z C, WANG J, HE S M, et al. Learning prediction-correction guidance for impact time control[J]. Aerospace Science and Technology, 2021, 119, 107187.
doi: 10.1016/j.ast.2021.107187 |
| 23 |
黄嘉, 常思江. 基于数据驱动的攻击时间和攻击角度控制导引律[J]. 系统工程与电子技术, 2022, 44 (10): 3213- 3220.
doi: 10.12305/j.issn.1001-506X.2022.10.26 |
|
HUANG J, CHANG S J. Data driven attack time and attack angle control guidance law[J]. Systems Engineering and Electronics, 2022, 44 (10): 3213- 3220.
doi: 10.12305/j.issn.1001-506X.2022.10.26 |
|
| 24 | 黄嘉, 常思江, 陈琦, 等. 不依赖剩余飞行时间的数据驱动攻击时间控制导引律[J]. 兵工学报, 2023, 44 (8): 2299- 2309. |
| HUANG J, CHANG S J, CHEN Q, et al. A data-driven attack time control guidance law that does not rely on remaining flight time[J]. Journal of Ordnance Engineering, 2023, 44 (8): 2299- 2309. | |
| 25 | YANG Z Q, LIU X D, LIU H K. Impact time control guidance law with time-varying velocity based on deep reinforcement learning[J]. Aerospace Science and Technology, 2023, 142, 108603. |
| 26 |
CHENG L, JIANG F H, WANG Z B, et al. Multi-constrained real-time entry guidance using deep neural networks[J]. IEEE Trans. on Aerospace and Electronic Systems, 2021, 57 (1): 325- 340.
doi: 10.1109/TAES.2020.3015321 |
| 27 |
LI H X, LI H J, CAI Y L. Efficient and accurate online estimation algorithm for zero-effort-miss and time-to-go based on data driven method[J]. Chinese Journal of Aeronautics, 2019, 32 (10): 2311- 2323.
doi: 10.1016/j.cja.2019.05.013 |
| 28 |
HE S M, SHIN H S, TSOURDOS A. Computational missile guidance: a deep reinforcement learning approach[J]. Journal of Aerospace Information Systems, 2021, 18 (8): 571- 582.
doi: 10.2514/1.I010970 |
| 29 |
WANG N Y, WANG X G, CUI N G, et al. Deep reinforcement learning-based impact time control guidance law with constraints on the field-of-view[J]. Aerospace Science and Technology, 2022, 128, 107765.
doi: 10.1016/j.ast.2022.107765 |
| 30 | 刘子超, 王江, 何绍溟, 等. 基于预测校正的落角约束计算制导方法[J]. 航空学报, 2022, 43 (8): 325- 433. |
| LIU Z C, WANG J, HE S M, et al. Guidance method based on prediction correction for landing angle constraint calculation[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (8): 325- 433. | |
| 31 |
张嘉文, 史金光, 刘佳佳, 等. 带落角约束的均值聚类神经网络滑模制导律研究[J]. 电光与控制, 2021, 28 (3): 46- 55.
doi: 10.3969/j.issn.1671-637X.2021.03.009 |
|
ZHANG J W, SHI J G, LIU J J, et al. Research on sliding mode guidance law of mean clustering neural network with drop angle constraint[J]. Electronics Optics & Control, 2021, 28 (3): 46- 55.
doi: 10.3969/j.issn.1671-637X.2021.03.009 |
|
| 32 |
WANG Z K, FANG Y W, FU W X, et al. Cooperative guidance laws against highly maneuvering target with impact time and angle[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236 (5): 1006- 1016.
doi: 10.1177/09544100211026081 |
| 33 |
LI Q C, ZHANG W S, HAN G, et al. Finite time convergent wavelet neural network sliding mode control guidance law with impact angle constraint[J]. International Journal of Automation and Computing, 2015, 12 (6): 588- 599.
doi: 10.1007/s11633-015-0927-5 |
| 34 | 周德云, 杨振, 张堃. 基于模糊RBF网络的自适应变结构制导律设计[J]. 飞行力学, 2016, 34 (4): 54- 58. |
| ZHOU D Y, YANG Z, ZHANG K. Design of adaptive variable structure guidance law based on fuzzy RBF network[J]. Flight Mechanics, 2016, 34 (4): 54- 58. | |
| 35 | WANG Y, TANG S, SHANG W, et al. Adaptive fuzzy sliding mode guidance law considering available acceleration and autopilot dynamics[J]. International Journal of Aerospace Engineering, 2018, 2018: 6081801. |
| 36 |
温先福, 李刚, 张兴, 等. 基于模糊神经网络的滑模变结构制导律的研究[J]. 弹道学报, 2014, 26 (4): 13- 18.
doi: 10.3969/j.issn.1004-499X.2014.04.003 |
|
WEN X F, LI G, ZHANG X, et al. Research on sliding mode variable structure guidance law based on fuzzy neural network[J]. Journal of Ballistics, 2014, 26 (4): 13- 18.
doi: 10.3969/j.issn.1004-499X.2014.04.003 |
|
| 37 | SHAO G H J, XU Z, WANG X M, et al. Adaptive three-dimensional guidance law based on neural dynamic surface control[C]//Proc. of the IEEE International Conference on Aircraft Utility Systems, 2016. |
| 38 |
佟廷帅, 刘晓利, 张志勇, 等. 基于RBF神经网络增益调节的滑模制导律[J]. 兵器装备工程学报, 2019, 40 (12): 110- 114.
doi: 10.11809/bqzbgcxb2019.12.022 |
|
TONG T S, LIU X L, ZHANG Z Y, et al. Sliding mode guidance law based on RBF neural network gain adjustment[J]. Journal of Weapon Equipment Engineering, 2019, 40 (12): 110- 114.
doi: 10.11809/bqzbgcxb2019.12.022 |
|
| 39 |
陈勃, 杨开红, 季海波. 一种基于RBF神经网络增益调节的三维鲁棒导引律设计[J]. 中国科学技术大学学报, 2015, 45 (4): 280- 285.
doi: 10.3969/j.issn.0253-2778.2015.04.004 |
|
CHEN B, YANG K H, JI H B. A three-dimensional robust guidance law design based on RBF neural network gain adjustment[J]. Journal of University of Science and Technology of China, 2015, 45 (4): 280- 285.
doi: 10.3969/j.issn.0253-2778.2015.04.004 |
|
| 40 |
LAI C, WANG W H, LIU Z H, et al. Three-dimensional integrated guidance and control for terminal angle constrained attack against ground maneuvering target[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233 (7): 2393- 2412.
doi: 10.1177/0954410018778988 |
| 41 | LIU M Y, XIANG J M, ZHANG X J, et al. Nonsingular sliding mode control and RBF neural network based guidance law with impact angle[C]//Proc. of the OCEANS MTS/IEEE Charleston Conference, 2018. |
| 42 |
LI S, JIANG X Q. RBF neural network based second-order sliding mode guidance for Mars entry under uncertainties[J]. Aerospace Science and Technology, 2015, 43, 226- 235.
doi: 10.1016/j.ast.2015.03.006 |
| 43 | KIM M, HONG D, PARK S. Deep neural network-based guidance law using supervised learning[J]. Applied Sciences, 2020, 10 (21): 7865. |
| 44 | WANG C H, CHEN C Y. Intelligent missile guidance by using adaptive recurrent neural networks[C]//Proc. of the IEEE 11th International Conference on Networking, Sensing and Control, 2014: 559−564. |
| 45 |
RAHBAR N, BAHRAMI M. Synthesis of optimal feedback guidance law for homing missiles using neural networks[J]. Optimal Control Applications and Methods, 2000, 21 (3): 137- 142.
doi: 10.1002/1099-1514(200005/06)21:3<137::AID-OCA668>3.0.CO;2-E |
| 46 | RAJAGOPALAN A, FARUQI F A. Intelligent missile guidance using artificial neural networks[J]. Artificial Intelligence Research, 2015, 4 (1): 3919- 3936. |
| 47 | 方洋旺, 邓天博, 符文星. 智能制导律研究综述[J]. 无人系统技术, 2020, 3 (6): 36- 42. |
| FANG Y W, DENG T B, FU W X. A Review of intelligent guidance law research[J]. Unmanned Systems Technology, 2020, 3 (6): 36- 42. | |
| 48 | 王坤, 段欣然, 陈征, 等. 过载和攻击时间约束下的非线性最优制导方法[J]. 系统工程与电子技术, 2024, 46 (2): 649- 657. |
| WANG K, DUAN X R, CHEN Z, et al. Nonlinear optimal guidance method under overload and attack time constraints[J]. Systems Engineering and Electronics, 2024, 46 (2): 649- 657. | |
| 49 | CHENG L, WANG H, GONG S P, et al. Neural-network-based nonlinear optimal terminal guidance with impact angle constraints[J]. IEEE Trans. on Aerospace and Electronic Systems, 2024, 60 (1): 819- 830. |
| 50 | 白志会. 基于强化学习的拦截机动目标制导律研究[D]. 长沙: 国防科技大学, 2020. |
| BAI Z H. Research on guidance law for intercepting mobile targets based on reinforcement learning[D]. Changsha: National University of Defense Technology, 2020. | |
| 51 | 李士勇, 章钱. 智能制导: 寻的导弹智能自适应导引律[M]. 哈尔滨: 哈尔滨工业大学出版社, 2011. |
| LI S Y, ZHANG Q. Intelligent guidance: seeking missile intelligent adaptive guidance law[M]. Harbin: Harbin Institute of Technology Press, 2011. | |
| 52 | LI K B, BAI A H, SHIN H S, et al. Capturability of 3D RTPN guidance law against true arbitrarily maneuvering target with maneuverability limitation[J]. Chinese Journal of Aeronautics, 2022, 35 (7): 75- 90. |
| 53 | 张秦浩, 敖百强, 张秦雪. Q-learning强化学习制导律[J]. 系统工程与电子技术, 2020, 42 (2): 414- 419. |
| ZHANG Q H, AO B Q, ZHANG Q X. Q-learning reinforcement learning guidance law[J]. Systems Engineering and Electronics, 2020, 42 (2): 414- 419. | |
| 54 | 王金强, 苏日新, 刘莉, 等. Q-learning强化学习协同拦截制导律[J]. 导航定位与授时, 2022, 9 (5): 84- 90. |
| WANG J Q, SU R X, LIU L, et al. Q-learning reinforcement learning collaborative interception guidance law[J]. Navigation Positioning and Timing, 2022, 9 (5): 84- 90. | |
| 55 |
李庆波, 李芳, 董瑞星, 等. 利用强化学习开展比例导引律的导航比设计[J]. 兵工学报, 2022, 43 (12): 3040- 3047.
doi: 10.12382/bgxb.2021.0631 |
|
LI Q B, LI F, DONG R X, et al. Using reinforcement learning to develop navigation ratio design for proportional guidance law[J]. Journal of Ordnance Engineering, 2022, 43 (12): 3040- 3047.
doi: 10.12382/bgxb.2021.0631 |
|
| 56 | 张豪, 朱建文, 李小平, 等. 针对高机动目标的深度强化学习智能拦截制导[J]. 北京航空航天大学学报, 2023, 51 (6): 2060- 2069. |
| ZHANG H, ZHU J W, LI X P, et al. Deep reinforcement learning intelligent interception guidance for highly maneuverable targets[J]. Journal of Beihang University, 2023, 51 (6): 2060- 2069. | |
| 57 | ZAVOLI A, FEDERICI L. Reinforcement learning for robust trajectory design of interplanetary missions[J]. Journal of Guidance, Control, and Dynamics, 2021, 44 (8): 1425- 1439. |
| 58 | YANG H W, HU J C, LI S, et al. Reinforcement learning-based robust guidance for asteroid approaching[J]. Journal of Guidance, Control, and Dynamics, 2024, 47 (10): 2058- 2072. |
| 59 |
FURFARO R, SCORSOGLIO A, LINARES R, et al. Adaptive generalized ZEM-ZEV feedback guidance for planetary landing via a deep reinforcement learning approach[J]. Acta Astronautica, 2020, 171, 156- 171.
doi: 10.1016/j.actaastro.2020.02.051 |
| 60 | GAUDET B, FURFARO R. Missile homing-phase guidance law design using reinforcement learning[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference, 2012. |
| 61 | GAUDET B, FURFARO R, LINARES R. A guidance law for terminal phase exo-atmospheric interception against a maneuvering target using angle-only measurements optimized using reinforcement meta-learning[C]//Proc. of the AIAA Scitech 2020 Forum, 2020. |
| 62 | TANG J, BAI Z H, LIANG Y G, et al. An exoatmospheric homing guidance law based on deep Q network[J]. International Journal of Aerospace Engineering, 2022, 2022: 1544670. |
| 63 | LIANG Y G, TANG J, BAI Z H, et al. Homing guidance law design against maneuvering targets based on DDPG[J]. International Journal of Aerospace Engineering, 2023, 2023: 4188037. |
| 64 |
SHALUMOV V. Cooperative online guide-launch-guide policy in a target-missile-defender engagement using deep reinforcement learning[J]. Aerospace Science and Technology, 2020, 104, 105996.
doi: 10.1016/j.ast.2020.105996 |
| 65 | 邱潇颀, 高长生, 荆武兴. 拦截大气层内机动目标的深度强化学习制导律[J]. 宇航学报, 2022, 43 (5): 685- 695. |
| QIU X Q, GAO C S, JING W X. Deep reinforcement learning guidance law for intercepting maneuvering targets in the atmosphere[J]. Journal of Astronautics, 2022, 43 (5): 685- 695. | |
| 66 | 陈文雪, 高长生, 荆武兴. 拦截机动目标的信赖域策略优化制导算法[J]. 航空学报, 2023, 44 (11): 282- 300. |
| CHEN W X, GAO C S, JING W X. Trust region strategy optimization guidance algorithm for intercepting mobile targets[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (11): 282- 300. | |
| 67 | 梁晨, 王卫红, 赖超. 带攻击角度约束的深度强化元学习制导律[J]. 宇航学报, 2021, 42 (5): 611- 620. |
| LIANG C, WANG W H, LAI C. Deep reinforcement meta learning guidance law with attack angle constraints[J]. Journal of Astronautics, 2021, 42 (5): 611- 620. | |
| 68 |
GAUDET B, FURFARO R, LINARES R, et al. Reinforcement meta-learning for interception of maneuvering exoatmospheric targets with parasitic attitude loop[J]. Journal of Spacecraft and Rockets, 2021, 58 (2): 386- 399.
doi: 10.2514/1.A34841 |
| 69 |
GAUDET B, FURFARO R, LINARES R. Reinforcement learning for angle-only intercept guidance of maneuvering targets[J]. Aerospace Science and Technology, 2020, 99, 105746.
doi: 10.1016/j.ast.2020.105746 |
| 70 |
GAUDET B, LINARES R, FURFARO R. Adaptive guidance and integrated navigation with reinforcement meta-learning[J]. Acta Astronautica, 2020, 169, 180- 190.
doi: 10.1016/j.actaastro.2020.01.007 |
| 71 | DU M J, PENG C, MA J J. Deep reinforcement learning based missile guidance law design for maneuvering target interception[C]//Proc. of the 40th Chinese Control Conference, 2021: 3733–3738. |
| 72 | WANG X, CAI Y L, FANG Y Z, et al. Intercept strategy for maneuvering target based on deep reinforcement learning[C]//Proc. of the 40th Chinese Control Conference, 2021: 3547–3552. |
| 73 |
HONG D S, KIM M J, PARK S S. Study on reinforcement learning-based missile guidance law[J]. Applied Sciences, 2020, 10 (18): 6567.
doi: 10.3390/app10186567 |
| 74 | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Trans. on Knowledge and Data Engineering, 2009, 22 (10): 1345- 1359. |
| 75 | LIU C, GRYLLIAS K. Simulation-driven domain adaptation for rolling element bearing fault diagnosis[J]. IEEE Trans. on Industrial Informatics, 2021, 1, 5760- 5770. |
| 76 | 王育鹏, 吕帅帅, 杨宇, 等. 基于域自适应的复合材料结构损伤识别方法[J]. 航空学报, 2022, 43 (6): 184- 191. |
| WANG Y P, LYU S S, YANG Y, et al. Damage identification method of composite structures based on domain adaptive[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (6): 184- 191. | |
| 77 | 罗皓文, 何绍溟, 金天宇, 等. 基于迁移学习的角度约束时间最短制导算法[J]. 航空学报, 2023, 44 (19): 242- 256. |
| LUO H W, HE S M, JIN T Y, et al. A guidance algorithm based on transfer learning for minimizing time constraints from a perspective[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (19): 242- 256. | |
| 78 | 罗皓文, 何绍溟, 亢有为. 一种基于迁移学习的多任务制导算法[J]. 兵工学报, 2024, 45 (6): 1787- 1798. |
| LUO H W, HE S M, KANG Y W. A multi-task guidance algorithm based on transfer learning[J]. Journal of Ordnance Engineering, 2024, 45 (6): 1787- 1798. | |
| 79 |
JIN T Y, HE S M. Ensemble transfer learning midcourse guidance algorithm for velocity maximization[J]. Journal of Aerospace Information Systems, 2023, 20 (4): 204- 215.
doi: 10.2514/1.I011070 |
| 80 | 高树一, 林德福, 郑多, 等. 针对集群攻击的飞行器智能协同拦截策略[J]. 航空学报, 2023, 44 (18): 276- 291. |
| GAO S Y, LIN D F, ZHENG D, et al. Intelligent collaborative interception strategy for aircraft targeting cluster attacks[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (18): 276- 291. | |
| 81 | 倪炜霖, 王永海, 徐聪, 等. 基于强化学习的高超飞行器协同博弈制导方法[J]. 航空学报, 2023, 44 (202): 55- 66. |
| NI W L, WANG Y H, XU C, et al. Collaborative game guidance method for hypersonic aircraft based on reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (202): 55- 66. | |
| 82 | SU H, PENNG H, MEI X N, et al. Research on multi-aircraft time cooperative interception method based on TD3 algorithm[C]//Proc. of Chinese Intelligent Systems Conference, 2023, 1091: 653–665. |
| 83 |
ZHOU W H, LI J, LIU Z H, et al. Improving multi-target cooperative tracking guidance for UAV swarms using multi-agent reinforcement learning[J]. Chinese Journal of Aeronautics, 2022, 35 (7): 100- 112.
doi: 10.1016/j.cja.2021.09.008 |
| 84 |
LAN X J, CHEN J D, ZHAO Z J, et al. Cooperative guidance of multiple missiles: a hybrid coevolutionary approach[J]. IEEE Trans. on Control Systems Technology, 2024, 32 (1): 128- 142.
doi: 10.1109/TCST.2023.3301141 |
| 85 |
NI W L, LIU J Q, LI Z, et al. Cooperative guidance strategy for active spacecraft protection from a homing interceptor via deep reinforcement learning[J]. Mathematics, 2023, 11, 4211.
doi: 10.3390/math11194211 |
| 86 |
樊会涛, 张新朝. 精确制导武器智能化若干问题思考[J]. 航空兵器, 2024, 31 (2): 1- 7.
doi: 10.12132/ISSN.1673-5048.2024.0033 |
|
FAN H T, ZHANG X C. Think of several issues on precision guided weapons intelligentizing[J]. Aero Weaponry, 2024, 31 (2): 1- 7.
doi: 10.12132/ISSN.1673-5048.2024.0033 |
| [1] | 黄庚, 李旦, 张建秋. 时变二次规划的鲁棒归零神经网络求解模型[J]. 系统工程与电子技术, 2025, 47(9): 2775-2784. |
| [2] | 石文强, 雷迎科, 金虎, 滕飞. 基于自适应小波分解和轻量化网络架构的特定辐射源识别算法[J]. 系统工程与电子技术, 2025, 47(9): 2785-2796. |
| [3] | 蒋明煜, 张顺生, 肖思瑶. 面向轻量级交叉注意力卷积网络的SAR目标识别[J]. 系统工程与电子技术, 2025, 47(9): 2853-2861. |
| [4] | 姚鹏, 韩美玉, 王德川, 高志诚. 基于对抗进化强化学习的多无人艇追捕方法[J]. 系统工程与电子技术, 2025, 47(9): 2960-2970. |
| [5] | 魏潇龙, 吴亚荣, 姚登凯, 赵顾颢. 基于深度强化学习的无人机空战机动分层决策算法[J]. 系统工程与电子技术, 2025, 47(9): 2993-3003. |
| [6] | 张国庆, 徐轶晖, 李纪强, 张显库, 邱斌. 基于异步搜寻制导的机/船协同事件触发控制[J]. 系统工程与电子技术, 2025, 47(9): 3058-3065. |
| [7] | 杨大鹏, 龚资浩, 王小也, 郭正玉, 罗德林. 基于多智能体强化学习的无人机协同截击机动决策研究[J]. 系统工程与电子技术, 2025, 47(9): 3076-3085. |
| [8] | 陈文洁, 张浦, 史高翔, 刘林, 刘烜. 基于余弦校验关系的卷积神经网络LDPC码盲识别[J]. 系统工程与电子技术, 2025, 47(9): 3117-3125. |
| [9] | 王奇, 潘宇宁, 郑峻峰, 王力. 考虑力学形变的相控阵天线波束控制实现策略[J]. 系统工程与电子技术, 2025, 47(8): 2421-2428. |
| [10] | 杨知沐, 张绍杰, 张朝原, 王浩宇, 赵卯卯. 基于微分博弈的导弹避撞协同制导律设计[J]. 系统工程与电子技术, 2025, 47(8): 2667-2675. |
| [11] | 张梦泽, 田黎育. 基于高分辨谱估计的雷达目标分类方法[J]. 系统工程与电子技术, 2025, 47(7): 2146-2153. |
| [12] | 符小卫, 王辛夷, 乔哲. 基于APIQ算法的多无人机攻防对抗策略[J]. 系统工程与电子技术, 2025, 47(7): 2205-2215. |
| [13] | 柳佳豪, 徐任杰, 孙茂桐, 姜九瑶, 李际超, 杨克巍. 基于强化学习的装备体系韧性优化方法[J]. 系统工程与电子技术, 2025, 47(7): 2216-2223. |
| [14] | 朱运豆, 孙海权, 胡笑旋. 基于指针网络架构的多星协同成像任务规划方法[J]. 系统工程与电子技术, 2025, 47(7): 2246-2255. |
| [15] | 符小卫, 王辛夷, 乔哲. 基于ASDDPG算法的多无人机对抗策略[J]. 系统工程与电子技术, 2025, 47(6): 1867-1879. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||