系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (9): 3117-3125.doi: 10.12305/j.issn.1001-506X.2025.09.34

• 通信与网络 • 上一篇    

基于余弦校验关系的卷积神经网络LDPC码盲识别

陈文洁1(), 张浦2,*, 史高翔3, 刘林2, 刘烜2   

  1. 1. 中国电子科技集团第十研究所,四川 成都 610036
    2. 西南交通大学信息编码与传输省重点实验室,四川 成都 611756
    3. 93147部队,四川 成都 610041
  • 收稿日期:2024-08-05 出版日期:2025-09-25 发布日期:2025-09-16
  • 通讯作者: 张浦 E-mail:chenwenjiespring@163.com
  • 作者简介:陈文洁(1989—),女,高级工程师,硕士,主要研究方向为通信信号处理与分析、信号智能处理
    史高翔(1989—),男,工程师,本科,主要研究方向为信号通信系统分析
    刘 林(1974—),女,副教授,博士,主要研究方向为信号处理、通信对抗、无线定位
    刘 烜(2000—),男,硕士研究生,主要研究方向为信道译码、信号处理、通信对抗
  • 基金资助:
    中电天奥有限公司创新理论技术群基金(R110324JG001)资助课题

Blind recognition of LDPC codes based on the convolutional neural network with cosine check relationship

Wenjie CHEN1(), Pu ZHANG2,*, Gaoxiang SHI3, Lin LIU2, Xuan LIU2   

  1. 1. The 10th Research Institute of China Electronics Technology Group Corporation,Chengdu 610036,China
    2. Key Laboratory of Information Coding and Transmission,Southwest Jiaotong University,Chengdu 611756,China
    3. Unit 93147 of the PLA,Chengdu 610041,China
  • Received:2024-08-05 Online:2025-09-25 Published:2025-09-16
  • Contact: Pu ZHANG E-mail:chenwenjiespring@163.com

摘要:

针对低信噪比环境下低密度奇偶校验(low density parity check,LDPC)码的识别率低的问题,提出了一种基于余弦校验关系分布的卷积神经网络(convolutional neural network,CNN)算法。该算法基于码字与正确和错误校验矩阵的余弦校验关系统计分布间的差异性,利用LDPC码与候选集校验矩阵计算得到的余弦校验关系的统计特性作为CNN的输入,利用CNN的深层信息挖掘能力,设计一种结构简单的四层CNN模型,实现LDPC码的有效识别。仿真结果表明,仅使用一个码字的条件下,在信噪比为3.25 dB时,对码率1/2、2/3B、3/4A、3/4B、5/6,码长2304的LDPC码的正确识别率达到90%以上,与传统算法相比,性能提升了0.25~1.25 dB。

关键词: 低密度奇偶校验码, 闭集识别, 余弦校验关系, 卷积神经网络

Abstract:

Aiming at the problem of low recognition rate of low density parity check (LDPC) code in low signal-to-noise ratio environment, a convolutional neural network (CNN) algorithm based on the distribution of cosine check relations hip is proposed. This algorithm utilizes the statistical distribution differences of cosine check relations hip between codewords and correct and incorrect check matrices. The statistical characteristics of cosine check relations hip calculated from LDPC codes and candidate set check matrices are used as inputs for the CNN. By leveraging the deep information mining capability of CNN, a simple four-layer CNN model is designed to achieve effective recognition of LDPC codes. Simulation results show that with only one codeword, the correct recognition rate of LDPC codes with code rates of 1/2, 2/3B, 3/4A, 3/4B, and 5/6, and a code length of 2304, exceeds 90% at a signal-to-noise ratio of 3.25 dB. Compared to traditional algorithms, performance is improved by 0.25?1.25 dB.

Key words: low density parity check (LDPC) code, closed set recognition, cosine check relationship, convolutional neural network (CNN)

中图分类号: