| 1 |
STRIPELIS D, AMBITE J L. Federated learning over harmonized data silos[C]// Proc. of the International Workshop on Health Intelligence, 2023: 27−41.
|
| 2 |
WEN J, ZHANG Z X, LAN Y, et al. A survey on federated learning: challenges and applications[J]. International Journal of Machine Learning and Cybernetics, 2023, 14 (2): 513- 535.
doi: 10.1007/s13042-022-01647-y
|
| 3 |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]//Proc. of the Artificial Intelligence and Statistics, 2017: 1273−1282.
|
| 4 |
SIKANDAR H S, WAHEED H, TAHIR S, et al. A detailed survey on federated learning attacks and defenses[J]. Electronics, 2023, 12 (2): 260.
doi: 10.3390/electronics12020260
|
| 5 |
SHEJWALKAR V, HOUMANSADR A, KAIROUZ P, et al. Back to the drawing board: a critical evaluation of poisoning attacks on production federated learning [C]// Proc. of the IEEE Symposium on Security and Privacy , 2022: 1354−1371.
|
| 6 |
YANG Q. AI and data privacy protection: the way to federated learning[J]. Journal of Information Security Research, 2019, 5 (11): 961965.
|
| 7 |
WANG K Q, LIU J, LI C, et al. A survey on threats to federated learning[J]. Journal of Information Security Research, 2022, 8 (3): 223234.
|
| 8 |
BIGGIO B, NELSON B, LASKOV P. Poisoning attacks against support vector machines [C]//Proc. of the International Conference on Machine Learning, 2012: 1467−1474.
|
| 9 |
YANG Q, LIU Y, CHEN T J, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10 (2): 1- 19.
|
| 10 |
NGUYEN D C, DING M, PATHIRANA P N, et al. Federated learning for internet of things: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2021, 23 (3): 1622- 1658.
|
| 11 |
ELBIR A M, SONER B, ÇOLERI S, et al. Federated learning in vehicular networks[C]// Proc. of the IEEE International Mediterranean Conference on Communications and Networking, 2022: 72−77.
|
| 12 |
SAYLAM B, INCE O D. Federated learning on edge sensing devices: a review[EB/OL].[2024-10-20]. https://arxiv.org/abs/2311.01201.
|
| 13 |
肖雄, 唐卓, 肖斌, 等. 联邦学习的隐私保护与安全防御研究综述 [J]. 计算机学报, 2023, 46 (5): 1019−1044.
|
|
XIAO X, TANG Z, XIAO B, et al. Review of research on privacy rotection and security defense of federated learning[J]. Journal of Computer Science, 2023, 46 (5): 1019−1 044.
|
| 14 |
MAMMEN P M. Federated learning: opportunities and challenges[EB/OL].[2024-10-20]. https://arxiv. org/abs/2101.05428.
|
| 15 |
RODRIGUEZ-BARROSO N, JIMENEZ-LOPEZ D, LUZON M V, et al. Survey on federated learning threats: concepts, taxonomy on attacks and defences, experimental study and challenges[J]. Information Fusion, 2023, 90, 148- 173.
doi: 10.1016/j.inffus.2022.09.011
|
| 16 |
CHEN H M, WANG H D, LONG Q Y, et al. Advancements in federated learning: models, methods, and privacy[J]. ACM Computing Surveys, 2024, 57 (2): 1- 39.
|
| 17 |
HU K, GONG S, ZHANG Q, et al. An overview of implementing security and privacy in federated learning[J]. Artificial Intelligence Review, 2024, 57 (8): 204.
doi: 10.1007/s10462-024-10846-8
|
| 18 |
XIA G, CHEN J, YU C D, et al. Poisoning attacks in federated learning: a survey[J]. IEEE Access, 2023, 11, 10708- 10722.
doi: 10.1109/ACCESS.2023.3238823
|
| 19 |
SUN G, CONG Y, DONG J H, et al. Data poisoning attacks on federated machine learning[J]. IEEE Internet of Things Journal, 2021, 9 (13): 11365- 11375.
|
| 20 |
ZHANG K Y, TAO G H, XU Q L, et al. FLIP: a provable defense framework for backdoor mitigation in federated learning[C]// Proc. of the International Conference on Learning Representations, 2022.
|
| 21 |
CAO D, CHANG S, LIN Z J, et al. Understanding distributed poisoning attack in federated learning [C]// Proc. of the IEEE 25th International Conference on Parallel and Distributed Systems, 2019: 233−239.
|
| 22 |
田宇琛. 联邦学习环境下投毒攻击的防御方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
|
|
TIAN Y C. Research on defense methods against poisoning attacks in federated learning environment [D]. Harbin: Harbin Institute of Technology, 2021.
|
| 23 |
TOLPEGIN V, TRUEX S, GURSOY M E, et al. Data poisoning attacks against federated learning systems[C]// Proc. of the European Symposium on Research in Computer Security, 2020: 480−501.
|
| 24 |
LI Z, WU X K, JIANG C J. Efficient poisoning attacks and defenses for unlabeled data in DDoS prediction of intelligent transportation systems[J]. Security and Safety, 2022, 1, 145- 165.
|
| 25 |
BLANCHARD P, MHAMDI E M E, GUERRAOUI R, et al. Machine learning with adversaries: byzantine tolerant gradient descent[C]// Proc. of the Advances in Neural Information Processing Systems, 2017: 119−129.
|
| 26 |
YIN D, CHEN Y D, KANNAN R, et al. Byzantine-robust distributed learning: towards optimal statistical rates[C]// Proc. of the International Conference on Machine Learning, 2018: 5650−5659.
|
| 27 |
亢飞, 李建彬. 基于数据复杂度的投毒数据检测方法[J]. 计算机应用研究, 2020, 37 (7): 2140- 2143.
|
|
KANG F, LI J B. Method for detecting poisoning data based on data complexity[J]. Application Research of Computers, 2020, 37 (7): 2140- 2143.
|
| 28 |
FUNG C, YOON C J M, BESCHASTNIKH I. The limitations of federated learning in sybil settings[C]// Proc. of the 23rd International Symposium on Research in Attacks, Intrusions and Defenses , 2020: 301−316.
|
| 29 |
JEBREEL N M, DOMINGO-FERRER J, SANCHEZ D, et al. LFighter: defending against the label-flipping attack in federated learning[J]. Neural Networks, 2024, 170, 111- 126.
doi: 10.1016/j.neunet.2023.11.019
|
| 30 |
刘金全, 张铮, 陈自东, 等. 一种基于联邦学习参与方的投毒攻击防御方法[J]. 计算机应用研究, 2024, 41 (4): 1171- 1176.
|
|
LIU J Q, ZHANG Z, CHEN Z D, et al. Defense method on poisoning attack based on clients in federated learning[J]. Application Research of Computers, 2024, 41 (4): 1171- 1176.
|
| 31 |
MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proc. of the 5th Berkeley Symposium on Mathematical Statistics and Probability, 1967.
|
| 32 |
孔翎超, 刘国柱. 离群点检测算法综述[J]. 计算机科学, 2024, 51 (8): 20- 33.
|
|
KONG L C, LIU G Z. Review of outlier detection algorithms[J]. Computer Science, 2024, 51 (8): 20- 33.
|