系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (2): 352-359.doi: 10.12305/j.issn.1001-506X.2025.02.02

• 电子技术 • 上一篇    

基于噪声元学习的卫星遥测信号异常检测方法

郭鹏飞1, 靳锴2, 陈琪锋1, 魏才盛1,*   

  1. 1. 中南大学自动化学院, 湖南 长沙 410083
    2. 中国电子科技集团有限公司第五十四研究所, 河北 石家庄 050081
  • 收稿日期:2024-01-17 出版日期:2025-02-25 发布日期:2025-03-18
  • 通讯作者: 魏才盛
  • 作者简介:郭鹏飞 (2000—), 男, 硕士研究生, 主要研究方向为飞行器状态感知与异常检测
    靳锴 (1988—), 男, 高级工程师, 博士, 主要研究方向为无人系统地面测控与信息处理
    陈琪锋 (1976—), 男, 教授, 博士, 主要研究方向为飞行器智能决策、先进制导与控制
    魏才盛 (1990—), 男, 教授, 博士, 主要研究方向为航天器智能感知与控制
  • 基金资助:
    国家级项目(2021YFA0717100);湖南省自然科学基金优青项目(2022JJ20081);中南大学创新驱动计划(2023CXQD066);中南大学研究生自主探索创新项目(2024ZZTS0768)

Anomaly detection method of satellite telemetry signal based on noise meta learning

Pengfei GUO1, Kai JIN2, Qifeng CHEN1, Caisheng WEI1,*   

  1. 1. School of Automation, Central South University, Changsha 410083, China
    2. The 54th Research Institute of China Electronics Technology Group, Shijiazhuang 050081, China
  • Received:2024-01-17 Online:2025-02-25 Published:2025-03-18
  • Contact: Caisheng WEI

摘要:

针对卫星遥测数据先验知识稀缺、常规数据驱动的异常检测方法难以准确辨识异常状态的问题,提出一种基于元学习与动态放缩阈值法的卫星遥测信号异常检测算法。首先,通过元学习算法求解一组具备快速适应小样本任务能力的长短期记忆神经网络初始参数,并在训练过程中为网络权重添加噪声,进一步提升模型泛化性能。其次,采用动态放缩阈值法分析预测误差序列,划定动态变化的异常阈值,标记异常点索引以实现卫星遥测数据异常检测。最后,通过两组卫星遥测信号算例验证所提算法的有效性。仿真结果表明,所提方法能够改善预测模型过拟合现象, 并降低漏警概率。

关键词: 卫星遥测信号, 异常检测, 长短期记忆神经网络, 元学习

Abstract:

Due to the scarcity of prior knowledge in satellite telemetry data, conventional data-driven anomaly detection methods are difficult to accurately identify abnormal states, a satellite telemetry signal anomaly detection algorithm based on meta learning and dynamic scaling threshold method is proposed. Firstly, a set of initial parameters of a long short-term memory (LSTM) neural network with the ability to quickly adapt to small sample tasks is solved through meta learning algorithms. The noise is added to the network weights during the training process to further improve generalization performance of the model. Secondly, the dynamic scaling threshold method is used to analyze the prediction error sequence, define the abnormal threshold for dynamic changes, and mark the index of abnormal points to achieve anomaly detection of satellite telemetry data. Finally, the effectiveness of the proposed algorithm is verified through two sets of satellite telemetry signal examples. The simulation results show that the proposed method can improve the overfitting phenomenon of the prediction model and reduce the probability of missed alarms.

Key words: satellite telemetry signal, abnormal detection, longshort-term memory (LSTM) neural net-work, meta-learning

中图分类号: