1 |
XU Z P , CHENG Z T , GUO B . A hybrid data-driven framework for satellite telemetry data anomaly detection[J]. Acta Astronautica, 2023, 205, 281- 294.
doi: 10.1016/j.actaastro.2023.02.009
|
2 |
沈毅, 李利亮, 王振华. 航天器故障诊断与容错控制技术研究综述[J]. 宇航学报, 2020, 41 (6): 647- 656.
|
|
SHEN Y , LI L L , WANG Z H . A review of fault diagnosis and fault-tolerant control techniques for spacecraft[J]. Journal of Astronautics, 2020, 41 (6): 647- 656.
|
3 |
何家辉, 程志君, 郭波. 联合字典学习与OCSVM的遥测数据异常检测方法[J]. 航空学报, 2023, 44 (13): 207- 219.
|
|
HE J H , CHENG Z J , GUO B . Telemetry anomaly detection method based on joint dictionary learning and OCSVM[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (13): 207- 219.
|
4 |
WANG Y , ZHANG T , HUI J J , et al. An anomaly detection me-thod for spacecraft solar arrays based on the ILS-SVM model[J]. Journal of Systems Engineering and Electronics, 2023, 34 (2): 515- 529.
doi: 10.23919/JSEE.2023.000011
|
5 |
WANG Y K , GONG J L , ZHANG J , et al. A deep learning anomaly detection framework for satellite telemetry with fake anomalies[J]. International Journal of Aerospace Engineering, 2022, 2022, 1676933.
|
6 |
XIANG G , LIN R S . Robust anomaly detection for multivariate data of spacecraft through recurrent neural networks and extreme value theory[J]. IEEE Access, 2021, 9, 167447- 167457.
doi: 10.1109/ACCESS.2021.3136505
|
7 |
PANG G S , SHEN C H , CAO L B , et al. Deep learning for anomaly detection: a review[J]. ACM Computing Surveys, 2021, 54 (2): 1- 38.
|
8 |
CHEN J , PI D , WU Z Y , et al. Imbalanced satellite telemetry data anomaly detection model based on Bayesian LSTM[J]. Acta Astronautica, 2021, 180, 232- 242.
doi: 10.1016/j.actaastro.2020.12.012
|
9 |
MENG H Y, ZHANG Y X, LI Y X, et al. Spacecraft anomaly detection via transformer reconstruction error[C]//Proc. of the International Conference on Aerospace System Science and Engineering, 2020: 351-362.
|
10 |
傅晨琦, 季利鹏, 孙伟卿, 等. 基于深度残差网络的模拟电路软故障诊断方法[J]. 飞控与探测, 2021, 4 (4): 74- 81.
|
|
FU C Q , JI L P , SUN W Q , et al. Deep residual learning-based soft fault diagnosis method for analog circuits[J]. Flight Control & Detection, 2021, 4 (4): 74- 81.
|
11 |
丁建立, 张琪琪, 王静, 等. 基于Transformer-VAE的ADS-B异常检测方法[J]. 系统工程与电子技术, 2023, 45 (11): 3680- 3689.
|
|
DING J L , ZHANG Q Q , WANG J , et al. ADS-B anomaly detection method based on transformer-VAE[J]. Systems Engineering and Electronics, 2023, 45 (11): 3680- 3689.
|
12 |
YU J S , SONG Y , TANG D Y , et al. Telemetry data-based spacecraft anomaly detection with spatial-temporal generative adversarial networks[J]. IEEE Trans. on Instrumentation and Measurement, 2021, 70, 3515209.
|
13 |
LEI X , LU N Y , CHEN C , et al. Attention mechanism based multi-scale feature extraction of bearing fault diagnosis[J]. Journal of Systems Engineering and Electronics, 2023, 34 (5): 1359- 1367.
|
14 |
张万超, 倪昊, 舒鹏, 等. 基于蚁群优化的长短时神经网络变外形飞行器故障模式识别[J]. 飞控与探测, 2023, 6 (3): 72- 77.
|
|
ZHANG W C , NI H , SHU P , et al. Fault mode recognition for variable shape vehicles based on ACO-LSTM[J]. Flight Control & Detection, 2023, 6 (3): 72- 77.
|
15 |
LIU L , TIAN L , KANG Z , et al. Spacecraft anomaly detection with attention temporal convolution networks[J]. Neural Computing and Applications, 2023, 35, 9753- 9761.
|
16 |
DOUNIA L , RYAN A , SÉBASTIEN L D . Anomaly detection for data accountability of Mars telemetry data[J]. Expert Systems with Applications, 2022, 189, 116060.
|
17 |
YANG L , MA Y , ZENG F , et al. Improved deep learning based telemetry data anomaly detection to enhance spacecraft operation reliability[J]. Microelectronics and Reliability, 2021, 126, 114311.
|
18 |
PAN S J , YANG Q . A survey on transfer learning[J]. IEEE Trans. on Knowledge and Data Engineering, 2009, 22 (10): 1345- 1359.
|
19 |
刘切, 上官子卓, 李嘉玺. 基于迁移学习的航天器遥测数据异常检测技术[J]. 空间控制技术与应用, 2023, 49 (4): 76- 85.
|
|
LIU Q , SHANGGUAN Z Z , LI J X . Transfer learning based anomaly detection technology for spacecraft telemetry data[J]. Aerospace Control and Application, 2023, 49 (4): 76- 85.
|
20 |
WEISS K , KHOSHGOFTAAR T M , WANG D D . A survey of transfer learning[J]. Journal of Big Data, 2016, 3 (1): 1- 40.
|
21 |
HOSPEDALES T , ANTONIOU A , MICAELLI P , et al. Meta-learning in neural networks: a survey[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2022, 44 (9): 5149- 5169.
|
22 |
BAIK S Y, CHOI J H, KIM H W, et al. Meta-learning with task-adaptive loss function for few-shot learning[C]//Proc. of the IEEE/CVF International Conference on Computer Vision, 2021: 9465-9474.
|
23 |
MA M R , HAN L S , ZHOU C J . BTAD: a binary transformer deep neural network model for anomaly detection in multiva-riate time series data[J]. Advanced Engineering Informatics, 2023, 56, 101949.
|
24 |
LIN J , SHAO H D , ZHOU X D , et al. Generalized MAML for few-shot cross-domain fault diagnosis of bearing driven by hete-rogeneous signals[J]. Expert Systems with Application, 2023, 230, 120696.
|
25 |
CHEN J K, QIU X P, LIU P F, et al. Meta multi-task learning for sequence modeling[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2018.
|
26 |
YU Y , SI X S , HU C H , et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31 (7): 1235- 1270.
|
27 |
GREFF K , SRIVASTAVA R K , KOUTNÍK J , et al. LSTM: a search space odyssey[J]. IEEE Trans. on Neural Networks and Learning Systems, 58 (10): 2222- 2232.
|
28 |
ZHANG S , YE F , WANG B N , et al. Few-shot bearing fault diagnosis based on model-agnostic meta-learning[J]. IEEE Trans. on Industry Applications, 2021, 57 (5): 4754- 4764.
|
29 |
HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]//Proc. of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018.
|
30 |
ZENG Z F , JIN G , XU C , et al. Satellite telemetry data ano-maly detection using causal network and feature-attention-based LSTM[J]. IEEE Trans. on Instrumentation and Measurement, 2022, 71, 3507221.
|
31 |
SANCHEZ F, PANKRATZ C, LINDHOLM D M, et al. Webtcad: a tool for AD-HOC visualization and analysis of telemetry data for multiple missions[C]//Proc. of the SpaceOps Conference, 2018
|