1 |
罗凯鑫, 吴美平, 范颖. 基于最大熵方法的鲁棒自适应滤波及其应用[J]. 系统工程与电子技术, 2020, 42 (3): 667- 673.
|
|
LUO K X , WU M P , FAN Y . Robust adaptive filtering based on maximum entropy method and its application[J]. Systems Engineering and Electronics, 2020, 42 (3): 667- 673.
|
2 |
PAN W C , ZHAN X Q , ZHANG X , et al. A subset-reduced method for FDE ARAIM of tightly-coupled GNSS/INS[J]. Sensors, 2019, 19 (22): 4847.
doi: 10.3390/s19224847
|
3 |
张闯, 赵修斌, 庞春雷, 等. LS-SVM辅助的小幅值及缓变故障检测与容错方法[J]. 中国惯性技术学报, 2019, 27 (3): 415- 420.
|
|
ZHANG C , ZHAO X B , PANG C L , et al. LS-SVM assisted fault detection and tolerance method for small-amplitude fault and gradual fault[J]. Journal of Chinese Inertial Technology, 2019, 27 (3): 415- 420.
|
4 |
JIANG W , LIU D , CAI B G , et al. A fault-tolerant tightly coupled GNSS/INS/OVS integration vehicle navigation system based on an FDP algorithm[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (99): 6365- 6378.
|
5 |
DU S , GAN X D , ZHANG R Q , et al. The integration of rotary MEMS INS and GNSS with artificial neural networks[J]. Mathe-matical Problems in Engineering, 2021, 2021, 6669682.
|
6 |
苏敬, 何华锋, 何耀民, 等. 考虑SAR量测特性的弹载SINS/SAR组合导航滤波算法[J]. 系统工程与电子技术, 2021, 43 (4): 1044- 1049.
|
|
SU J , HE H F , HE Y M , et al. Filtering algorithm of missile-borne SINS/SAR integrated navigation considering SAR mea-surement characteristics[J]. Systems Engineering and Electro-nics, 2021, 43 (4): 1044- 1049.
|
7 |
SHEN C , XIONG Y F , ZHAO D H , et al. Multi-rate strong tracking square-root cubature Kalman filter for MEMS-INS/GPS/polarization compass integrated navigation system[J]. Mechanical Systems and Signal Processing, 2022, 163 (1): 108146.
|
8 |
王巍, 邢朝洋, 冯文帅. 自主导航技术发展现状与趋势[J]. 航空学报, 2021, 42 (11): 525049.
|
|
WANG W , XING C Y , FENG W S . Sate of the art and perspectives of autonomous navigation technology[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (11): 525049.
|
9 |
孙淑光, 温启新. 基于高程异常补偿的飞机终端区组合导航高度优化算法[J]. 系统工程与电子技术, 2021, 43 (9): 2612- 2619.
|
|
SUN S G , WEN Q X . Aircraft height optimization algorithm of integrated navigation in terminal area based on height anomaly compensation[J]. Systems Engineering and Electronics, 2021, 43 (9): 2612- 2619.
|
10 |
陈莹超, 熊继军, 周兆英, 等. 基于短期数据融合的自主三维导航系统[J]. 仪表技术与传感器, 2017, 2017 (1): 130- 133. 130-133, 138
doi: 10.3969/j.issn.1002-1841.2017.01.033
|
|
CHEN Y C , XIONG J J , ZHOU Z Y , et al. Independent 3D navigation system based on short-term data fusion[J]. Instrument Technology and Sensors, 2017, 2017 (1): 130- 133. 130-133, 138
doi: 10.3969/j.issn.1002-1841.2017.01.033
|
11 |
ZHANG C, ZHAO X B, PANG C L, et al. Improved fault detection and tolerance method based on local test and adaptively robust filtering for INS/GNSS integration[C]//Proc. of the IEEE Chinese Control and Decision Conference, 2019: 5919-5924.
|
12 |
董毅, 王鼎杰, 吴杰. 载波相位时间差分辅助的SINS/GNSS紧组合导航方法[J]. 中国惯性技术学报, 2021, 29 (4): 451- 458.
|
|
DONG Y , WANG D J , WU J . MEMS-based SINS/GNSS tightly-coupled navigation aided by time-differenced carrier-phase measurements[J]. Journal of Chinese Inertial Technology, 2021, 29 (4): 451- 458.
|
13 |
NAGAI K, SPENKO M, HENDERSON R, et al. Evaluating INS/GNSS availability for self-driving cars in urban environments[C]//Proc. of the International Technical Meeting of the Institute of Navigation, 2021: 243-253.
|
14 |
YAO Y Q , XU X S , ZHU C C , et al. A hybrid fusion algorithm for GPS/INS integration during GPS outages[J]. Mea-surement, 2017, 103, 42- 51.
|
15 |
ZHANG C , ZHAO X B , PANG C L , et al. The influence of satellite configuration and fault duration time on the perfor-mance of fault detection in GNSS/INS integration[J]. Sensors, 2019, 19 (9): 2147.
|
16 |
TEUNISSEN P . Distributional theory for the DIA method[J]. Journal of Geodesy, 2018, 92 (1): 59- 80.
|
17 |
ZHANG C , ZHAO X B , PANG C L , et al. Adaptive fault isolation and system reconfiguration method for GNSS/INS integration[J]. IEEE Access, 2020, 8, 17121- 17133.
|
18 |
WANG L H , ZHI K Y , LI B , et al. Dynamically adjusting filter gain method for suppressing GNSS observation outliers in integrated navigation[J]. Journal of Navigation, 2018, 71 (6): 1396- 1412.
|
19 |
苗岳旺, 周巍, 田亮, 等. 基于新息χ2检测的扩展抗差卡尔曼滤波及其应用[J]. 武汉大学学报, 2016, 41 (2): 269- 273.
|
|
MIAO Y W , ZHOU W , TIAN L , et al. Extended robust Kalman filter based on innovation chi-square test algorithm and its application[J]. Geomatics and Information Science of Wuhan University, 2016, 41 (2): 269- 273.
|
20 |
胡晓月, 康凯, 钱骅, 等. 基于LSTM的LEO卫星链路自适应算法[J]. 系统工程与电子技术, 2021, 43 (1): 237- 243.
|
|
HU X Y , KANG K , QIAN H , et al. Link adaptation algorithm based on LSTM network for LEO satellite[J]. Systems Engineering and Electronics, 2021, 43 (1): 237- 243.
|
21 |
WANG B , LIU S C , WANG B , et al. Multi-step ahead short-term predictions of storm surge level using CNN and LSTM network[J]. Acta Oceanologica Sinica, 2021, 40 (11): 104- 118.
|
22 |
LI B , LIANG S Y , CHEN D Q , et al. A decision-making method for air combat maneuver based on hybrid deep learning network[J]. Chinese Journal of Electronics, 2022, 31 (1): 107- 115.
|
23 |
ZHOU H , ZHOU Y H , HU J J , et al. LSTM-based energy management for electric vehicle charging in commercial-building prosumers[J]. Journal of Modern Power Systems and Clean Energy, 2021, 9 (5): 1205- 1216.
|
24 |
CHANG Y Z , WANG Y Q , SHEN Y Y , et al. A new fuzzy strong tracking cubature Kalman filter for INS/GNSS[J]. GPS Solutions, 2021, 25 (3): 120.
|
25 |
ZHANG C , ZHAO X B , PANG C L , et al. Improved fault detection method based on robust estimation and eliding window test for INS/GNSS integration[J]. Journal of Navigation, 2020, 73 (4): 776- 796.
|
26 |
ZAMINPARDAZ S , TEUNISSEN P J G . DIA-datasnooping and identifiability[J]. Journal of Geodesy, 2019, 93 (2): 85- 101.
|
27 |
CHEN C C , ZHANG Q , KASHANI M H , et al. Forecast of rainfall distribution based on fixed sliding window long short-term memory[J]. Engineering Applications of Computational Fluid Mechanics, 2022, 16 (1): 248- 261.
|
28 |
MOUATADID S , ADAMOWSKI J F , TIWARI M K , et al. Coupling the maximum overlap discrete wavelet transform and long short-term memory networks for irrigation flow forecasting[J]. Agricultural Water Management, 2019, 219 (1): 72- 85.
|
29 |
ZHANG G H , XU P H , XU H S , et al. Prediction on the urban GNSS measurement uncertainty based on deep learning networks with long short-term memory[J]. IEEE Sensors Journal, 2021, 21 (18): 20563- 20577.
|
30 |
WANG J , JIANG W P , LI Z , et al. A new multi-scale sliding window LSTM framework (MSSW-LSTM): a case study for GNSS time-series prediction[J]. Remote Sensing, 2021, 13 (16): 3328.
|
31 |
KASELIMI M , VOULODIMOS A , DOULAMIS N , et al. A causal long short-term memory sequence to sequence model for TEC prediction using GNSS observations[J]. Remote Sensing, 2020, 12 (9): 1354.
|
32 |
王鑫, 吴际, 刘超, 等. 基于LSTM循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44 (4): 772- 784.
|
|
WANG X , WU J , LIU C , et al. Exploring LSTM based recurrent neural network for failure time series prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (4): 772- 784.
|
33 |
李世玺. 一种基于混沌理论和LSTM的GPS高程时间序列预测方法[J]. 导航定位学报, 2020, 8 (1): 65- 73.
|
|
LI S X . A GPS height time series prediction method based on chaos theory and LSTM[J]. Journal of Navigation and Posi-tioning, 2020, 8 (1): 65- 73.
|