| 1 |
宁国强, 张卫东, 侯波, 等. 通信中干扰及抗干扰技术综述[J]. 四川兵工学报, 2011, (5): 115- 119,130.
|
|
NING G Q, ZHANG W D, HOU B, et al. Overview of interference and anti interference technologies in communication[J]. Journal of Sichuan Ordnance Industry, 2011, (5): 115- 119,130.
|
| 2 |
O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//Proc. of the 17th International Conference on Engineering Applications of Neural Networks, 2016: 213−226.
|
| 3 |
吴昊, 张杭. 基于高阶累积量与神经网络的干扰识别算法[J]. 军事通信技术, 2008, 29 (1): 67- 71.
|
|
WU H, ZHANG H. Algorithm for jamming recignition based on high order cumulants and neural networks[J]. Journal of Military Communications Technology, 2008, 29 (1): 67- 71.
|
| 4 |
WANG P Y, CHENG Y F, DONG B H. Multi-depth adaptive networks for wireless interference identification[C]//Proc. of the International Conference on Communications, 2021.
|
| 5 |
WU Q Q, SUN Z, ZHOU X. Interference detection and recognition based on signal reconstruction using recurrent neural network[C]//Proc. of the IEEE Globecom Workshops, 2019.
|
| 6 |
XU Z, WU Z Y. Compound model of navigation interference recognition based on deep sparse denoising auto-encoder[C]//Proc. of the IEEE 3rd International Conference on Information Communication and Signal Processing, 2020: 430−435.
|
| 7 |
YANG Y, ZHU L D. An efficient way for satellite interference signal recognition via incremental learning[C]//Proc. of the International Symposium on Networks, Computers and Communications, 2019.
|
| 8 |
童超, 刁鸣, 杨承志. 独立分量分析联合小波变换的多分量信号调制识别研究[J]. 科学技术与工程, 2016, 16 (30): 258- 263.
|
|
TONG C, DIAO M, YANG C Z. Multi-component signal modulation research based on joint independent component analysis and wavelet transform[J]. Science Technology and Engineering, 2016, 16 (30): 258- 263.
|
| 9 |
WANG Y X, HUANG Y, CHEN Z Y, et al. Complicated interference identification via machine learning methods[C]//Proc. of the IEEE 4th International Conference on Electronic Information and Communication Technology, 2021: 400−405.
|
| 10 |
QU Q Z, WEI S J, LIU S, et al. JRNet: jamming recognition networks for radar compound suppression jamming signals[J]. IEEE Trans. on Vehicular Technology, 2020, 69 (12): 15035- 15045.
doi: 10.1109/TVT.2020.3032197
|
| 11 |
TU S M, CHENG Q, QIAN F, et al. Composite interference signals recognition based on YOLOv5[C]//Proc. of the IEEE 21st International Conference on Ubiquitous Computing and Communications, 2022: 210−215.
|
| 12 |
李杰, 孙闽红, 仇兆炀. 时频域重叠多信号智能检测方法研究[J]. 信号处理, 2021, 37(5): 878−884.
|
|
LI J, SUN M H, CHOU Z Y. Research on intelligent setection method of overlapping multiple signals in time and frequency domain[J]. Journal of Singal Processing, 2021, 37(5): 878−884.
|
| 13 |
杨颖, 朱立东. 卫星导航系统中复合干扰的高效识别方法[C]//第11届中国卫星导航年会, 2020.
|
|
YANG Y, ZHU L D. An efficient recognition method of mix-interference in satellite navigation system[C]// Proc. of the the 11th China Satellite Navigation Annual Conference, 2020.
|
| 14 |
陈自力, 韦乃棋, 朱安石. 基于分数阶Fourier变换的宽带干扰识别方法[J]. 电光与控制, 2013, (10): 102- 105.
doi: 10.3969/j.issn.1671-637X.2013.10.023
|
|
CHEN Z L, WEI N Q, ZHU A S. Identification of wide-band jamming based on FRFT[J]. Electronics Optics & Control, 2013, (10): 102- 105.
doi: 10.3969/j.issn.1671-637X.2013.10.023
|
| 15 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770−778.
|
| 16 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132−7141.
|
| 17 |
HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
|
| 18 |
尚东东, 张劲东, 杜盈, 等. 基于SPWVD和改进AlexNet的复合干扰识别[J]. 数据采集与处理, 2021, 36 (3): 577- 586.
|
|
SHANG D D, ZHANG J D, DU Y, et al. Composite jamming recognition based on SPWVD and improved AlexNet[J]. Journal of Data Acquisition and Processing., 2021, 36 (3): 577- 586.
|
| 19 |
YANG X L, FU T H, WANG Y B. Wireless communication jamming recognition based on lightweight residual network[C]//Proc. of the IEEE 3rd International Conference on Electronics Technolog, 2020.
|
| 20 |
LIU Q, ZHANG W. Deep learning and recognition of radar jamming based on CNN[C]//Proc. of the 12th International Symposium on Computational Intelligence and Design, 2019.
|