系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (2): 418-427.doi: 10.12305/j.issn.1001-506X.2025.02.09

• 传感器与信号处理 • 上一篇    

轻量化的ML-SNet雷达复合干扰识别算法

郭立民, 黄文青, 陈前, 王佳宾   

  1. 哈尔滨工程大学信息与通信工程学院, 黑龙江 哈尔滨 150001
  • 收稿日期:2023-12-25 出版日期:2025-02-25 发布日期:2025-03-18
  • 通讯作者: 黄文青
  • 作者简介:郭立民 (1977—), 男, 副教授, 博士, 主要研究方向为宽带雷达信号检测
    黄文青 (1999—), 男, 硕士研究生, 主要研究方向为雷达干扰识别
    陈前 (2001—), 男, 硕士研究生, 主要研究方向为雷达接收机
    王佳宾 (2000—), 男, 硕士研究生, 主要研究方向为雷达接收机

Lightweight algorithm of ML-SNet radar compound jamming recognition

Limin GUO, Wenqing HUANG, Qian CHEN, Jiabin WANG   

  1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
  • Received:2023-12-25 Online:2025-02-25 Published:2025-03-18
  • Contact: Wenqing HUANG

摘要:

针对复杂电磁环境下雷达复合干扰识别困难和网络模型复杂度高的问题, 将多标签分类与改进的ShuffleNet V2相结合, 提出一种轻量化的多标签ShuffleNet(multi-labeling ShuffleNet, ML-SNet)雷达复合干扰识别算法。首先, 使用轻量化的ShuffleNet V2作为主干网络, 引入SimAM(similarity-based attention module)注意力机制, 提高网络特征提取能力。其次, 使用漏斗激活线性整流函数(funnel activation rectified linear unit, FReLU)代替线性整流单元(rectified linear unit, ReLU)激活函数, 减少特征图的信息损失。最后, 使用多标签分类算法对网络输出进行分类, 得到识别结果。实验结果表明, 在干噪比范围为-10~10 dB的情况下, 所提算法对15类雷达复合干扰的平均识别率为97.9%。与其他网络相比, 所提算法具有较低的计算复杂度, 而且识别性能表现最佳。

关键词: 复合干扰识别, 多标签分类, 轻量化, 计算复杂度

Abstract:

Aiming at the problems of difficult radar compound jamming recognition and high complexity of network model in complex electromagnetic environments, a lightweight multi-labeling ShuffleNet (ML-SNet) radar compound jamming recognition algorithm is proposed by combining multi-label classification with the improved ShuffleNet V2. Firstly, the lightweight ShuffleNet V2 is used as the backbone network, and the similarity-based attention module (SimAM) attention mechanism is introduced to improve the network feature extraction capability. Secondly, the funnel activation rectified linear unit (FReLU) activation function is used instead of the rectified linear unit (ReLU) activation function to reduce the information loss of the feature map. Finally, the recognition results are obtained by classifying the network output using a multi-label classification algorithm. Experimental results indicate that the proposed algorithm achieves an average recognition rate of 97.9% for 15 classes of radar compound jamming with the jamming-to-noise ratio of -10-10 dB. The proposed algorithm has a lower computational complexity and the best performance in terms of recognition performance compared to other networks.

Key words: compound jamming recognition, multi-label classification, lightweight, computational complexity

中图分类号: