1 |
GENG Z , YAN H J , ZHANG J D , et al. Deep-learning for radar: a survey[J]. IEEE Access, 2021, 9, 141800- 141818.
doi: 10.1109/ACCESS.2021.3119561
|
2 |
LI K , BO J , WANG P H , et al. Radar active antagonism through deep reinforcement learning: a way to address the challenge of mainlobe jamming[J]. Signal Processing, 2021, 186, 108130.
doi: 10.1016/j.sigpro.2021.108130
|
3 |
TAN M , WANG C Y , XUE B , et al. A novel deceptive jamming approach against frequency diverse array radar[J]. IEEE Sensors Journal, 2020, 21 (6): 8323- 8332.
|
4 |
LYU Q Z , QUAN Y H , FENG W , et al. Radar deception jamming recognition based on weighted ensemble CNN with transfer learning[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 60, 5107511.
|
5 |
ZHAO Y J , TIAN B , WANG C Y , et al. Research on main-lobe deceptive jamming against FDA-MIMO radar[J]. IET Radar, Sonar & Navigation, 2021, 15 (6): 641- 654.
|
6 |
LUO Z , CAO Y , YEO T S , et al. Few-shot radar jamming re-cognition network via time-frequency self-attention and global knowledge distillation[J]. IEEE Trans.on Geoscience and Remote Sensing, 2023, 61, 5105612.
|
7 |
SHI C W , ZHANG Q , LIN T , et al. Recognition of micro-motion jamming based on complex-valued convolutional neural network[J]. Sensors, 2023, 23 (3): 1118.
doi: 10.3390/s23031118
|
8 |
ZHOU H P , WANG L , MA M , et al. Compound radar jamming recognition based on signal source separation[J]. Signal Processing, 2024, 214, 109246.
doi: 10.1016/j.sigpro.2023.109246
|
9 |
SHAO G P , CHEN Y , WEI Y . Deep fusion for radar jamming signal classification based on CNN[J]. IEEE Access, 2020, 8, 117236- 117244.
doi: 10.1109/ACCESS.2020.3004188
|
10 |
LIN A , MA Z Y , HUANG Z , et al. Unknown radar waveform recognition based on transferred deep learning[J]. IEEE Access, 2020, 8, 184793- 184807.
doi: 10.1109/ACCESS.2020.3029192
|
11 |
ZHAO S S , ZHOU Y , ZHANG L R , et al. Discrimination between radar targets and deception jamming in distributed multiple-radar architectures[J]. IET Radar, Sonar & Navigation, 2017, 11 (7): 1124- 1131.
|
12 |
GRECO M , GINI F , FAFINA A . Radar detection and classification of jamming signals belonging to a cone class[J]. IEEE Trans.on Signal Procession, 2008, 56 (6): 1984- 1993.
|
13 |
SU D T, GAO M G. Research on jamming recognition techno-logy based on characteristic parameters[C]//Proc. of the IEEE 5th International Conference on Signal and Image Processing, 2020: 303-307.
|
14 |
朱峰, 蒋倩倩, 林川, 等. 基于支持向量机的典型宽带电磁干扰源识别[J]. 系统工程与电子技术, 2021, 43 (9): 2400- 2406.
|
|
ZHU F , JIANG Q Q , LIN C , et al. Typical wideband EMI identification based on support vector machine[J]. Systems Engineering and Electronics, 2021, 43 (9): 2400- 2406.
|
15 |
GAO M, LI H T, JIAO B, et al. Simulation research on classification and identification of typical active jamming against LFM radar[C]//Proc. of the 17th International Conference on Signal Processing Systems, 2019: 214-221.
|
16 |
YAO Z K , TANG C B , WANG C , et al. Cooperative jamming resource allocation model and algorithm for netted radar[J]. Electronics Letters, 2022, 58 (22): 834- 836.
doi: 10.1049/ell2.12611
|
17 |
LING Q , HUANG P H , WANG D H , et al. Range deception jamming performance evaluation for moving targets in a ground-based radar network[J]. Electronics, 2023, 12 (7): 1614.
doi: 10.3390/electronics12071614
|
18 |
FENG L W , LIU S T , XU H Z . Multifunctional radar cognitive jamming decision based on dueling double deep Q-network[J]. IEEE Access, 2022, 10, 112150- 112157.
doi: 10.1109/ACCESS.2022.3214842
|
19 |
QU Q Z , WEI S J , LIU S , et al. JRNet: jamming recognition networks for radar compound suppression jamming signals[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (12): 15035- 15045.
doi: 10.1109/TVT.2020.3032197
|
20 |
SHAO G Q , CHEN Y S , WEI Y S . Deep fusion for radar jamming signal classification based on CNN[J]. IEEE Access, 2020, 8, 117236- 117244.
doi: 10.1109/ACCESS.2020.3004188
|
21 |
张顺生, 陈爽, 陈晓莹, 等. 面向小样本的多模态雷达有源欺骗干扰识别方法[J]. 雷达学报, 2023, 12 (4): 882- 891.
|
|
ZHANG S S , CHEN S , CHEN X Y , et al. Active deception jamming recognition method in multimodal radar based on small samples[J]. Journal of Radars, 2023, 12 (4): 882- 891.
|
22 |
ZHANG J X , ZHOU Z , LIU C , et al. Radar compound jamming cognition based on a deep object detection network[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022, 59 (3): 3251- 3263.
|
23 |
FU R R. Compound jamming signal recognition based on neural networks[C]//Proc. of the International Conference on Instrumentation & Measurement, Computer, Communication and Control, 2016: 737-740.
|
24 |
XIAO Y H , ZHOU J Y , YU Y Z , et al. Active jamming recognition based on bilinear EfficientNet and attention mechanism[J]. IET Radar, Sonar & Navigation, 2021, 15 (9): 957- 968.
|
25 |
ZHANG S J , YANG H , YUAN W , et al. Edge device detection of tea leaves with one bud and two leaves based on ShuffleNetV2-YOLOV5-Lite-E[J]. Agronomy, 2023, 13 (2): 557.
doi: 10.3390/agronomy13020557
|
26 |
CAI Z Y , QIAO X Y , ZHANG J W , et al. RepVGG-SimAM: an efficient bad image classification method based on RepVGG with simple parameter-free attention module[J]. Applied Sciences, 2023, 13 (21): 11925.
doi: 10.3390/app132111925
|
27 |
QIU S, XU X M, CAI B L. FReLU: flexible rectified linear units for improving convolutional neural networks[C]//Proc. of the 24th International Conference on Pattern Recognition, 2018: 1223-1228.
|
28 |
程玉胜, 赵大卫, 王一宾, 等. 非平衡化标签补全核极限学习机多标签学习[J]. 电子学报, 2019, 47 (3): 719- 725.
|
|
CHENG Y S , ZHAO D W , WANG Y B , et al. Multi-label learning of kernel extreme learning machine with non-equilibrium label completion[J]. Journal of Electronics, 2019, 47 (3): 719- 725.
|
29 |
ZHU M T , LI Y J , PAN Z S , et al. Automatic modulation re-cognition of compound signals using a deep multi-label classifier: a case study with radar jamming signals[J]. Signal Processing, 2020, 169, 107393.
doi: 10.1016/j.sigpro.2019.107393
|
30 |
邵正途, 许登荣, 徐文利, 等. 基于LSTM和残差网络的雷达有源干扰识别[J]. 系统工程与电子技术, 2023, 45 (2): 416- 423.
doi: 10.12305/j.issn.1001-506X.2023.02.12
|
|
SHAO Z T , XU D R , XU W L , et al. Radar active jamming recognition based on LSTM and residual network[J]. Systems Engineering and Electronics, 2023, 45 (2): 416- 423.
doi: 10.12305/j.issn.1001-506X.2023.02.12
|