系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (7): 2314-2328.doi: 10.12305/j.issn.1001-506X.2025.07.24

• 制导、导航与控制 • 上一篇    

改进A-star算法的无人船动态路径规划

焉晓贞1,*, 周新悦1, 罗清华1,2   

  1. 1. 哈尔滨工业大学(威海)信息科学与工程学院, 山东 威海 264200
    2. 山东船舶技术研究院, 山东 威海 264209
  • 收稿日期:2024-06-25 出版日期:2025-07-16 发布日期:2025-07-22
  • 通讯作者: 焉晓贞
  • 作者简介:焉晓贞 (1981—), 女, 副教授, 博士, 主要研究方向为分布式无线定位、水下定位导航、智能无人系统
    周新悦 (1998—), 女, 硕士研究生, 主要研究方向为无人船路径规划
    罗清华 (1979—), 男, 教授, 博士, 主要研究方向为多源融合感知、智能控制、路径规划、任务分配
  • 基金资助:
    国家自然科学基金(62271164);山东省重大科技创新项目(2020CXGC010705);山东省重大科技创新项目(2021ZLGX-05);山东省重大科技创新项目(2022ZLGX04);山东省自然科学基金(R2020MF017);山东省自然科学基金(ZR2022MF255)

Improved A-star algorithm for dynamic path planning of unmanned ships

Xiaozhen YAN1,*, Xinyue ZHOU1, Qinghua LUO1,2   

  1. 1. School of Information Science and Engineering, Harbin Institute of Technology (Weihai), Weihai 264200, China
    2. Shandong Institute of Shipbuilding Technology, Weihai 264209, China
  • Received:2024-06-25 Online:2025-07-16 Published:2025-07-22
  • Contact: Xiaozhen YAN

摘要:

为了解决无人船动态路径规划中路径转折点多、路径安全性差以及传统A-star算法在动态环境中应用受限的问题, 提出一种改进的A-star算法。首先,通过修改open-list的存储方式和增加邻域搜索方向, 灵活调整无人船的行进方向, 提升其在动态环境中的适应能力。其次, 通过引入直线引导函数和安全距离代价公式, 有效优化路径规划过程, 避免不必要的路径绕行和碰撞风险。最后, 通过聚焦搜索方法, 减少无人船振荡反复运动。仿真结果表明, 改进的A-star算法能够成功躲避动态障碍物, 并且与其他动态路径规划算法相比, 改进A-star在路径长度方面减少了4.88%和0.09%, 平滑度方面减少了37.32%和23.17%。改进后的算法能生成更平滑、安全的路径, 适用于无人船的动态路径规划。

关键词: 路径规划, 无人船, A-star算法, 海洋巡航, 动态路径规划

Abstract:

In order to solve the problems of multiple turning points, poor path safety, and limited application of traditional A-star algorithms in dynamic environments in unmanned ship dynamic path planning, an improved A-star algorithm is proposed. Firstly, this method modifies the storage method of open-list and increases the direction of neighborhood search to flexibly adjust the direction of unmanned ships and improve their adaptability in dynamic environments. Secondly, by introducing a straight-line guidance function and a safety distance cost formula, the path planning process is effectively optimized to avoid unnecessary path detours and collision risks. Finally, by focusing on search methods, the oscillation and repeated motion of unmanned ship are reduced. The simulation results show that the improved A-star algorithm can avoid dynamic obstacles, and compared with other dynamic path planning algorithms, the improved A-star reduces path length by 4.88% and 0.09%, and smoothness by 37.32% and 23.17%. The improved algorithm can generate smoother and safer paths, suitable for dynamic path planning of unmanned ships.

Key words: path planning, unmanned ship, A-star algorithm, ocean cruise, dynamic path planning

中图分类号: