系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (10): 3257-3269.doi: 10.12305/j.issn.1001-506X.2025.10.13

• 传感器与信号处理 • 上一篇    

SAR有源干扰分类识别图像数据集仿真构建

高飞1,*(), 席睿达2(), 邢相薇3(), 邢妍1(), 张强2(), 党红杏1()   

  1. 1. 中国航天科技集团有限公司第五研究院西安分院,陕西 西安 710100
    2. 西安电子科技大学机电工程学院,陕西 西安 710071
    3. 中国人民解放军 61646部队,北京 100192
  • 收稿日期:2024-10-08 出版日期:2025-10-25 发布日期:2025-10-23
  • 通讯作者: 高飞 E-mail:gaofei2004630@163.com;RuidaXi@stu.xidian.edu.cn;xingxiangwei@nudt.edu.cn;1061871653@qq.com;qzhang@xidian.edu.cn;danghongx@163.com
  • 作者简介:席睿达(1999—),男,博士研究生,主要研究方向为多模态图像处理
    邢相薇(1985—),男,副研究员,博士,主要研究方向为SAR图像解译、智能解译算法评估
    邢 妍(1991—),女,高级工程师,硕士,主要研究方向为星载雷达数据预处理
    张 强(1979—),男,教授,博士,主要研究方向为计算机视觉与智能图像处理
    党红杏(1974—),女,研究员,硕士,主要研究方向为高分辨率机载/星载雷达系统设计和信号处理
  • 基金资助:
    卫星信息智能处理与应用技术重点实验室基金项目(2022-ZZKY-JJ-09-01); 2022年度中国空间研究院CAST基金重点项目资助课题

Image dataset simulation constructing for SAR active interference classification and recognition

Fei GAO1,*(), Ruida XI2(), Xiangwei XING3(), Yan XING1(), Qiang ZHANG2(), Hongxing DANG1()   

  1. 1. Xi’an Branch of the Fifth Academy of China Aerospace Science and Technology Corporation (CASC),Xi’an 710100,China
    2. School of Mechano-Electronic Engineering,Xidian University,Xi’an 710071,China
    3. Unit 61646 of the PLA,Beijing 100192,China
  • Received:2024-10-08 Online:2025-10-25 Published:2025-10-23
  • Contact: Fei GAO E-mail:gaofei2004630@163.com;RuidaXi@stu.xidian.edu.cn;xingxiangwei@nudt.edu.cn;1061871653@qq.com;qzhang@xidian.edu.cn;danghongx@163.com

摘要:

合成孔径雷达(synthetic aperture radar,SAR)图像可提供丰富的场景态势信息,而逐步恶化的电磁环境使得SAR抗干扰技术备受关注。近年来,深度学习技术在图像分类识别方面展现出优越性能。针对用于训练深度模型的有源干扰SAR图像数据需求量大且缺少干扰图像数据集的现状,在对13种典型有源干扰样式及其对SAR干扰特性分析的基础上,从多场景干扰参数覆盖性角度考虑,进行基于仿真的SAR干扰图像数据集构建;搭建基于Transformer的干扰识别模型和多个典型模型,在构建数据集上进行干扰分类识别研究。实验结果表明,由于引入全局自注意力机制的同时结合了可变形注意力机制,所提基于Transformer的干扰识别模型具备更强的干扰特征全局建模能力和干扰区域鉴别能力,在所构建数据集上相对其它模型表现出更为优良的性能。

关键词: 合成孔径雷达图像, 干扰, 分类识别, 深度学习, 数据集构建

Abstract:

Synthetic aperture radar (SAR) images can provide rich scene situational information, and with the gradually deteriorating electromagnetic environment much attention has been attracted to SAR anti-interference techniques. Deep learning technologies have shown excellent performance in image classification and recognition in recent years. Considering the large demand for active interference SAR image data for training deep models and the situation of lack of interference image datasets, based on the analysis of 13 typical active interference patterns and their interference characteristics against SAR, a simulation-based SAR interference image dataset is constructed from the perspective of multi-scenario interference parameter coverage, on which the interference classification and identification research is carried out, with a constructed Transformer-based interference recognition model and multiple typical models. Experimental results show that, due to the introduction of a global self attention mechanism combined with a deformable attention mechanism, the proposed Transformer-based interference recognition model has stronger global modeling ability of interference features and identification ability of interference regions, and exhibits berrer performance compared to other models on the constructed dataset.

Key words: synthetic aperture radar (SAR) image, interference, classification and recognition, deep learning, dataset construction

中图分类号: