系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (10): 3251-3256.doi: 10.12305/j.issn.1001-506X.2025.10.12

• 传感器与信号处理 • 上一篇    

基于递进神经网络的混叠干扰识别技术

付亦凡(), 阮航(), 穆贺强(), 周东平, 潘黎(), 雷蕾(), 鲍嘉瑞()   

  1. 北京无线电测量研究所,北京 100854
  • 收稿日期:2024-11-22 出版日期:2025-10-25 发布日期:2025-10-23
  • 通讯作者: 阮航 E-mail:2370131723@qq.com;ruanhang_bit@163.com;13611258792@163.com;13684234565@163.com;leilei202309@qq.com;baoyu_0512@qq.com
  • 作者简介:付亦凡(1999—),男,硕士研究生,主要研究方向为电子对抗
    穆贺强(1967—),男,研究员,博士,主要研究方向为雷达信号处理
    周东平(1997—),男,博士研究生,主要研究方向为电子对抗
    潘 黎(2001—),男,硕士研究生,主要研究方向为电子对抗
    雷 蕾(2001—),女,硕士研究生,主要研究方向为电子对抗
    鲍嘉瑞(2002—),男,硕士研究生,主要研究方向为电子对抗

Overlapping interference recognition based on stepwise neural network

Yifan FU(), Hang RUAN(), Heqiang MU(), Dongping ZHOU, Li PAN(), Lei LEI(), Jiarui BAO()   

  1. Beijing Institute of Radio Measurement,Beijing 100854,China
  • Received:2024-11-22 Online:2025-10-25 Published:2025-10-23
  • Contact: Hang RUAN E-mail:2370131723@qq.com;ruanhang_bit@163.com;13611258792@163.com;13684234565@163.com;leilei202309@qq.com;baoyu_0512@qq.com

摘要:

针对战场实战电磁对抗中,多干扰机协同作战会导致多种不同雷达干扰信号同时存在,使用传统卷积神经网络对大量混叠干扰进行识别存在规模大、难以精细化识别干扰类型的问题,提出一种递进式卷积神经网络,通过分步算法分别提取存在的混叠类型特征以及干扰类型特征。通过对多种混叠干扰信号时频分析,构建训练集与测试集对网络进行训练。仿真实验表明,该网络对同时存在的3种混叠类型下的15种不同干扰信号,可以达到99.3889%以上的识别准确率,在不同干噪比条件下识别效能明显优于传统卷积神经网络。

关键词: 递进神经网络, 混叠干扰信号, 特征提取, 干扰识别

Abstract:

In practical electromagnetic warfare scenarios, where multiple jammers operating in coordination create a complex environment with various radar jamming signals existing simultaneously, traditional convolutional neural networks (CNNs) struggle with the scale and specificity required for effective interference classification. This paper introduces a stepwise CNN, which addresses these challenges by employing a staged approach to separately extract overlap type feature and interference type features. Through time-frequency analysis of various overlapping jamming signals, training and fest datasets are developed to train the network. Simulation experiments show that the proposed network achieves a recognition accuracy rate of over 99.3889% for fifteen different jamming signals under three types of mixed interference conditions. The recognition performance under different signal-to-noise ratio conditions is significantly better than traditional CNNs.

Key words: stepwise neural network, overlap interference, feature extraction, interference recognition

中图分类号: