| 1 |
NASROLLAHI K, MOESLUND T. B. Super-resolution: a comprehensive survey[J]. Machine Vision and Applications, 2014, 25 (6): 1423- 1468.
doi: 10.1007/s00138-014-0623-4
|
| 2 |
林毓秀. 序列图像帧间插值方法及应用研究[D]. 济南: 山东财经大学, 2021.
|
|
LIN Y X. Research on interpolation method and application of sequence Images[D]. Jinan: Shandong University of Finance and Economics, 2021.
|
| 3 |
ROHDE G K , ALDROUBI A , HEALY D M J. Interpolation artifacts in sub-pixel image registration[J]. IEEE Trans. on Image Processing, 2009, 18 (2): 333- 345.
|
| 4 |
盛晓艳, 龚超. 数字图像插值算法比较研究[J]. 电脑知识与技术, 2019, 15 (8): 153- 156.
|
|
SHENG X Y, GONG C. Research on digital image interpolation algorithm[J]. Computer Knowledge and Technology, 2019, 15 (8): 153- 156.
|
| 5 |
张智邦, 李桂清, 韦国栋, 等. 形状插值算法综述[J]. 计算机辅助设计与图形学学报, 2015, 27 (8): 1376- 1387.
doi: 10.3969/j.issn.1003-9775.2015.08.004
|
|
ZHANG Z B, LI G Q, WEI G D, et al. Survey on shape interpolation[J]. Journal of Computer-aided Design and Computer Graphics, 2015, 27 (8): 1376- 1387.
doi: 10.3969/j.issn.1003-9775.2015.08.004
|
| 6 |
GADERMAYR M, KOLLER L, TSCHUCHNIG M, et al. MixUp-MIL: a study on linear & multilinear interpolation-based data augmentation for whole slide image classification[EB/OL]. [2024-07-01].https://arxiv.org/abs/2311.03052.
|
| 7 |
LUMINI A . Comparison of different image data augmentation approaches[J]. Journal of Imaging, 2021, 7(12): 254.
|
| 8 |
ZITOVA B, FLUSSER J. Image registration methods: a survey[J]. Image and Vision Computing, 2003, 21 (11): 977- 1000.
doi: 10.1016/S0262-8856(03)00137-9
|
| 9 |
梁墨翰. 基于生成对抗网络的多视角SAR图像目标数据扩充研究[D]. 成都: 电子科技大学, 2021.
|
|
LIANG M H. Research on multi-view SAR image target data augmentation based on generative adversarial networks[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
|
| 10 |
NALEPA J, MRUKWA G, PIECHACZEK S, et al. Data augmentation via image registration[C]// Proc. of the IEEE International Conference on Image Processing, 2019: 4250−4254.
|
| 11 |
MADASAMY S, DABU C N K, SUMATHI V, et al. A robust image registration using multi-scale feature extraction techniques using deep learning[C]// Proc. of the 4th International Conference on Smart Electronics and Communication, 2023: 1422−1427.
|
| 12 |
WANG C W, PEI J F, LIU X Y, et al. SAR target image generation method using azimuth-controllable generative adversarial network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 9381- 9397.
doi: 10.1109/JSTARS.2022.3218369
|
| 13 |
OH J, KIM M. PeaceGAN: a GAN-based multi-task learning method for SAR target image generation with a pose estimator and an auxiliary classifier[J]. Remote Sensing, 2021, 13 (19): 3939.
doi: 10.3390/rs13193939
|
| 14 |
DU S Y, HONG J, WANG Y, et al. A high-quality multicategory SAR images generation method with multiconstraint GAN for ATR[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 4011005.
|
| 15 |
GAO S W, QIU S L, MA Z Y, et al. SVAE-WGAN-based soft sensor data supplement method for process industry[J]. IEEE Sensors Journal, 2022, 22, 601- 610.
|
| 16 |
WU D H, ZHANG W Y, ZHANG P F. DPBA-WGAN: a vector-valued differential private bilateral alternative scheme on WGAN for image generation[J]. IEEE Access, 2023, 11, 13889- 13905.
doi: 10.1109/ACCESS.2023.3243473
|
| 17 |
ZHANG H Y, WANG Q, ZHANG R H, et al. Image reconstruction for electrical mpedance tomography (EIT) with improved wasserstein generative adversarial network (WGAN)[J]. IEEE Sensors Journal, 2023, 23 (5): 4466- 4475.
doi: 10.1109/JSEN.2022.3197663
|
| 18 |
TAKAHASHI M, WATANABE H. Face image generation for illustration by WGAN-GP using landmark information[C]// Proc. of the IEEE 10th Global Conference on Consumer Electronics, 2021: 936−937.
|
| 19 |
HU F S, DONG C Y, WANG M S, et al. WGAN-GP with residual network model for lithium battery thermal image data expansion with quantitative metrics[C]// Proc. of the IEEE 6th International Electrical and Energy Conference, 2023: 4030−4035.
|
| 20 |
LIU X Q, LI G, ZHAO Z, et al. EAF-WGAN: enhanced alignment fusion-wasserstein generative adversarial network for turbulent image restoration[J]. IEEE Trans. on Circuits and Systems for Video Technology, 2023, 33 (10): 5605- 5616.
doi: 10.1109/TCSVT.2023.3262685
|
| 21 |
YAN H, ZHANG Z W, XU J, et al. UW-CycleGAN: model-driven CycleGAN for underwater image restoration[J]. IEEE Trans. on Geoscience and Remote Sensing, 2023, 61
|
| 22 |
ZI Y, XIE F Y, SONG X D, et al. Thin cloud removal for remote sensing images using a physical-model-based CycleGAN with unpaired data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1004605.
|
| 23 |
GUZEL S, YAVUZ S. Infrared image generation from RGB images using CycleGAN[C]// Proc. of the International Conference on INnovations in Intelligent SysTems and Applications, 2022.
|
| 24 |
YU M T, YE X F, CHEN A, et al. Simulated sonar image generation method based on improved CycleGAN[C]// Proc. of the IEEE 11th International Conference on Computer Science and Network Technology, 2023: 281−285.
|
| 25 |
武士想, 尚鹏, 王立功. 小波-Lagrange方法进行医学图像层间插值[J]. 中国图象图形学报, 2016, 21(1): 78−85.
|
|
WU S X, SHANG P, WANG L G. Inter-slice interpolation for medical images by using the wavelet-Lagrange method[J]. Journal of Image and Graphics, 2016, 21(1) : 78−85.
|
| 26 |
LI Z N, CHEN X H, GOU S N , et al. WavEnhancer: unifying wavelet and transformer for image enhancement[J]. Journal of Computer Science and Technology, 2024, 39(2): 336.
|
| 27 |
SAHA M, NASKAR M K, CHATTERJI B N. Advanced wavelet transform for image processing-a survey[M]//MANDAL J, BHATTACHARYA K, MAJUMDAR I, et al, eds. Information, photonics and communication. Lecture Notes in Networks and Systems. Singapore: Springer, 2019.
|
| 28 |
WANG Z, BOVIK A C, SHEIKH H R , et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans. on Image Processing, 2004, 13: 600−612.
|
| 29 |
SAMAJDAR T, QURAISHI M I. Analysis and evaluation of image quality metrics[M]//MANDAL J, SATAPATHY S, KUMAR SANYAL M, et al. eds. Information systems design and intelligent applications. Advances in Intelligent Systems and Computing. New Delhi: Springer India, 2015.
|
| 30 |
LIU A, LIN W, NARWARIA M. Image quality assessment based on gradient similarity[J]. IEEE Trans. on Image Processing, 2012, 21, 1500- 1512.
doi: 10.1109/TIP.2011.2175935
|