系统工程与电子技术 ›› 2023, Vol. 45 ›› Issue (2): 530-537.doi: 10.12305/j.issn.1001-506X.2023.02.25
• 制导、导航与控制 • 上一篇
崔正达1,*, 魏明英1,2, 李运迁1
收稿日期:
2021-10-11
出版日期:
2023-01-13
发布日期:
2023-02-04
通讯作者:
崔正达
作者简介:
崔正达(1996—), 男, 博士研究生, 主要研究方向为制导控制系统设计Zhengda CUI1,*, Mingying WEI1,2, Yunqian LI1
Received:
2021-10-11
Online:
2023-01-13
Published:
2023-02-04
Contact:
Zhengda CUI
摘要:
高超声速飞行器下压段飞行环境复杂、弹道参数变化剧烈、被动减速较快, 传统解析预测采用的常值阻力系数假设不再适用。考虑攻角、马赫数影响, 对阻力系数表达式进行拓展, 基于解析理论对复杂弹道方程加以简化, 得到以剩余射程为自变量的微分方程, 通过数值积分快速求解弹道诸元, 提升全弹道快速规划能力。典型弹道仿真表明, 与传统常值假设相比, 所提方法可将俯冲下压段的时间预报误差降低到1 s左右, 同时不增加计算复杂度, 实现滑翔飞行器俯冲飞行时间、速度、动压的精准、快速预报。
中图分类号:
崔正达, 魏明英, 李运迁. 考虑阻力系数时变的下压段半解析时间预测方法[J]. 系统工程与电子技术, 2023, 45(2): 530-537.
Zhengda CUI, Mingying WEI, Yunqian LI. Semi-analytical encounter time estimation method in dive phase with time-varying drag coefficient[J]. Systems Engineering and Electronics, 2023, 45(2): 530-537.
1 | 魏明英,崔正达,李运迁.多弹协同拦截综述及展望[J].航空学报,2020,41(S1):723804. |
WEIM Y,CUIZ D,LIY Q.Review and future development of multi-missile coordinated interception[J].Acta Aeronautica et Austronautica Sinca,2020,41(S1):723804. | |
2 | 张远龙,谢愈.滑翔飞行器弹道规划与制导方法综述[J].航空学报,2020,41(1):023377. |
ZHANGY L,XIEY.Review of trajectory planning and gui-dance methods for gliding vehicles[J].Acta Aeronautica et Austronautica Sinca,2020,41(1):023377. | |
3 | MOSELEY P E. The Apollo entry guidance: a review of the mathematical development and its operational characteristics, 69-FMT-791[R]. Houston: Task MSC/TRW A-220, 1969. |
4 | GRAVES C A, HARPOLD J C. Apollo experience report mission planning for Apollo entry[R]. Washington, D.C. : National Aeronautics and Space Administration, 1972. |
5 | PAGE J A, ROGERS R O. Guidance and control of maneuvering reentry vehicles[C]//Proc. of the IEEE Conference on Decision and Control Including the 16th Symposium on Adaptive Processes and A Special Symposium on Fussy Set Theory and Applications, 1977: 659-664. |
6 |
MANCHESTERI R,SAVKINA V.Circular navigation missile guidance with incomplete information and uncertain autopilot model[J].Journal of Guidance, Control, and Dynamics,2004,27(6):1078-1083.
doi: 10.2514/1.3371 |
7 |
GRACEC,CLIFFE M,LUTZEF H,et al.Fixed trim reentry guidance analysis[J].Journal of Guidance, Control, and Dynamics,1982,5(6):558-563.
doi: 10.2514/3.19789 |
8 | HAPORDJ C,GRAVESC A.Shuttle entry guidance[J].Journal of Astronautical Science,1978,10,78-147. |
9 |
YUW B,CHENW C.Entry guidance with real-time planning of reference based on analytical solutions[J].Advances in Space Research,2015,55(9):2325-2345.
doi: 10.1016/j.asr.2015.02.002 |
10 | ROENNEKEA J,MARKLA.Re-entry control to a drag-vs.-energy profile[J].Journal of Guidance, Control, and Dyna-mics,1994,17(5):196-920. |
11 | HE R Z, LIU L H, TANG G J, et al. Footpoint determination for entry vehicles based on three-dimentional acceleration profile[C]//Proc. of the Chinses Control Conference, 2017. |
12 |
LUP.Entry guidance and trajectory control for reusable launch vehicle[J].Journal of Guidance, Control, and Dynamics,1997,20(1):143-149.
doi: 10.2514/2.4008 |
13 |
ZHANGY L,XIEY,PENGS C,et al.Entry trajectory gene-ration with complex constraints based on three-dimensional acceleration profile[J].Aerospace Science and Technology,2019,91,231-240.
doi: 10.1016/j.ast.2019.05.009 |
14 | 李天任,雷建长.基于光滑攻角剖面高超声速滑翔飞行器下降段轨迹设计[J].导航与航天运载技术,2018,3,10-14. |
LIT R,LEIJ C.Trajectory design in descending phase for hypersonic gliding vehicle based on smooth angle of attack profile[J].Missile and Space Vehicles,2018,3,10-14. | |
15 |
王浩宁,唐胜景,郭杰.带有动态攻角剖面的时间约束再入制导[J].空天防御,2021,4(1):71-76.
doi: 10.3969/j.issn.2096-4641.2021.01.012 |
WANGH N,TANGS J,GUOJ.Time-constrained reentry guidance with dynamic angle of attack profile[J].Air & Space Defence,2021,4(1):71-76.
doi: 10.3969/j.issn.2096-4641.2021.01.012 |
|
16 |
MUL,YUX,ZHANGY M,et al.Onboard guidance system design for reusable launch vehicles in the terminal area energy management phase[J].Acta Astronautics,2018,143,62-75.
doi: 10.1016/j.actaastro.2017.10.027 |
17 |
ZHOUH Y,WANGX G.Glide guidance for reusable launch vehicles using analytical dynamics[J].Aerospace Science and Technology,2020,98,105678.
doi: 10.1016/j.ast.2019.105678 |
18 |
LUOZ F,ZHANGH B,TANGG J.Skip entry guidance using numerical predictor-corrector and patched corridor[J].Acta Astronautica,2015,117,8-18.
doi: 10.1016/j.actaastro.2015.07.028 |
19 |
MEASEK D,CHEND T,TEUFELP,et al.Reduced-order entry trajectory planning for acceleration guidance[J].Journal of Guidance, Control, and Dynamics,2002,25(2):257-266.
doi: 10.2514/2.4906 |
20 |
LIZ H,HEB,WANGM H,et al.Time-coordination entry guidance for multi-hypersonic vehicles[J].Aerospace Science and Technology,2019,89,123-135.
doi: 10.1016/j.ast.2019.03.056 |
21 |
ZHAOD J,SONGZ Y.Reentry trajectory optimization with waypoint and no-fly zone constrains using multiphase convex programing[J].Acta Astronautica,2017,137,60-69.
doi: 10.1016/j.actaastro.2017.04.013 |
22 | GUOY H,LIX,ZHANGH J,et al.Entry guidance with terminal time control based on quasi-equilibrium glide condition[J].IEEE Trans.on Aerospace and Electronic Systems,2019,56(2):887-896. |
23 |
LEESL,HASTWIGF W,COHENC B.Use of aerodynamic lift during entry into the Earth's atmosphere[J].ARS Journal,1959,29(9):633-641.
doi: 10.2514/8.4853 |
24 |
ZHOUH Y,WANGX G,COIN G.Asent trajectory optimization for air-breathing vehicles in consideration of launch window[J].Optimal Control Applications and Methods,2020,41(2):349-368.
doi: 10.1002/oca.2546 |
25 |
LOHW H T.Some exact analytical solutions of planetary entry[J].AIAA Journal,1963,1(4):836-843.
doi: 10.2514/3.1650 |
26 |
ZHANGW Q,CHENW C,YUW B.Analytical solutions to three-dimensional hypersonic gliding trajectory over rotating Earth[J].Acta Astronaut,2021,179,702-716.
doi: 10.1016/j.actaastro.2020.11.031 |
27 | HUJ X,CHENK J,ZHAOH Y,et al.Hybrid entry gui-dance for reusable launch vehicles[J].Journal of Astronautics,2007,28(1):213-217. |
28 | 王青,莫华东,吴振东.基于能量的高超声速飞行器再入混合制导方法[J].北京航空航天大学学报,2014,40(5):579-584. |
WANGQ,MOH D,WUZ D.Energy-based hybrid reentry guidance for hypersonic vehicles[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(5):579-584. | |
29 | WANGJ B,QUX,RENZ.Hybrid reentry guidance based on the online trajectory planning[J].Journal of Astronautics,2012,33(9):1217-1224. |
30 | 朱建文,刘鲁华,汤国建.基于反馈线性化及滑模控制的俯冲机动制导方法[J].国防科技大学学报,2014,4(2):24-29. |
ZHUJ W,LIUL H,TANGG J.Diving guidance with maneuver based on feedback linearization and slide mode control[J].Journal of National University of Defense Technology,2014,4(2):24-29. | |
31 | LIZ H,HUC,DINGC B,et al.Stochastic gradient particle swarm optimization based entry trajectory rapid planning for hypersonic glide vehicles[J].Aerospace Science and Technology,2018,76,176-186. |
32 | LIZ H,HEB,WANGM H,et al.Time-coordination entry guidance for multi-hypersonic vehicles[J].Aerospace Science and Technology,2019,89,123-135. |
33 | CHERRY G. A general, explicit, optimizing guidance law for rocket-propelled spaceflight[C]//Proc. of the Astrodynamics Guidance and Control Conference, 1964: 638. |
34 | LINC F,TSAIL L.Analytical solution of optimal trajectory-shaping guidance[J].Journal of Guidance,1987,10(1):61-66. |
35 | OHLMEYERE J,PHILIPSC A.Generalized vector explicit guidance[J].Journal of Guidance, Control, and Dynamics,2006,29(2):261-268. |
36 | LINC L,LINY P,CHENK M.On the design of fuzzified trajectory shaping guidance law[J].ISA Transactions,2009,48,148-155. |
37 | KIMB S,LEEJ G,HANH S.Biased PNG law for impact with angular constraint[J].IEEE Trans.on Aerospace and Electronic Systems,1998,34(1):277-288. |
38 | JEONG S K, CHO S J, KIM E G. Angle constraint biased PNG[C]//Proc. of the 5th Control Conference, 2004: 20-23. |
39 | AKHIL G, GHOSE D. Biased PN based impact angle constrained guidance using a nonlinear engagement model[C]//Proc. of the IEEE American Control Conference, 2012: 950-955. |
[1] | 王冠, 茹海忠, 张大力, 马广程, 夏红伟. 弹性高超声速飞行器智能控制系统设计[J]. 系统工程与电子技术, 2022, 44(7): 2276-2285. |
[2] | 胥涯杰, 鲜勇, 李邦杰, 任乐亮, 李少朋, 郭玮林. 基于神经网络的高超声速飞行器惯导系统精度提高方法[J]. 系统工程与电子技术, 2022, 44(4): 1301-1309. |
[3] | 韦俊宝, 李海燕, 李静. 高超声速飞行器新型攻角约束反演控制[J]. 系统工程与电子技术, 2022, 44(4): 1310-1317. |
[4] | 安通, 王鹏, 王建华, 汤国建, 潘玉龙, 陈海山. 弹性高超声速飞行器动态面制导控制一体化设计方法[J]. 系统工程与电子技术, 2022, 44(3): 956-966. |
[5] | 张君彪, 熊家军, 兰旭辉, 李凡, 刘文俭, 席秋实. 基于自适应滤波的高超声速滑翔目标三维跟踪算法[J]. 系统工程与电子技术, 2022, 44(2): 628-636. |
[6] | 岳彩红, 唐胜景, 郭杰, 王肖, 张浩强. 高超声速伸缩式变形飞行器再入轨迹快速优化[J]. 系统工程与电子技术, 2021, 43(8): 2232-2243. |
[7] | 郭建国, 苏亚鲁. 高超飞行器自适应动态规划的控制系统设计[J]. 系统工程与电子技术, 2021, 43(6): 1628-1635. |
[8] | 张凯, 熊家军, 兰旭辉, 陈新. 盲区下高超声速飞行器贝叶斯指示交接方法[J]. 系统工程与电子技术, 2019, 41(3): 493-499. |
[9] | 齐晨, 曹运合, 王宇, 吴春林. 基于高超平台前斜视SAR双通道杂波抑制方法[J]. 系统工程与电子技术, 2019, 41(1): 58-65. |
[10] | 张登辉, 马萍, 晁涛, 王松艳. 高超声速飞行器制导控制系统性能评估[J]. 系统工程与电子技术, 2018, 40(8): 1811-1816. |
[11] | 晁涛, 王雨潇, 王松艳, 杨明. 考虑非最小相位特性的高超声速飞行器轨迹跟踪控制[J]. 系统工程与电子技术, 2018, 40(7): 1548-1553. |
[12] | 韩春耀, 熊家军, 张凯, 兰旭辉. 高超声速飞行器分解集成轨迹预测算法[J]. 系统工程与电子技术, 2018, 40(1): 151-158. |
[13] | 郭建国, 张添保, 周军, 王国庆. 临近空间高超声速飞行器匹配化滑模姿态控制[J]. 系统工程与电子技术, 2017, 39(9): 2081-2086. |
[14] | 赵贺伟, 梁勇, 杨秀霞. 弹性高超声速飞行器抗输入饱和动态神经网络控制[J]. 系统工程与电子技术, 2017, 39(4): 854-865. |
[15] | 王鹏飞, 王洁, 罗畅, 贾英杰. 高超声速飞行器输入受限模糊反演控制[J]. 系统工程与电子技术, 2017, 39(3): 612-619. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||