1 |
XU B , SHI Z A . An overview on flight dynamics and control approaches for hypersonic vehicles[J]. Science China Information Sciences, 2015, 58 (7): 819- 838.
|
2 |
程仙垒. 弹性高超声速飞行器鲁棒自适应控制方法研究[D]. 长沙: 国防科技大学, 2018.
|
|
CHENG X L. Robust adaptive control for flexible hypersonic vehicles[D]. Changsha: National University of Defense Techno-logy, 2018.
|
3 |
ZHAO T H , WANG P , LIU L P , et al. Integrated guidance and control with L2 disturbance attenuation for hypersonic vehicles[J]. Advances in Space Research, 2016, 57 (12): 2519- 2528.
doi: 10.1016/j.asr.2016.03.042
|
4 |
王建华, 刘鲁华, 王鹏, 等. 高超声速飞行器俯冲段制导控制一体化设计方法[J]. 航空学报, 2017, 38 (3): 202- 214.
|
|
WANG J H , LIU L H , WANG P , et al. Integrated guidance and control for hypersonic vehicles in dive phase[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38 (3): 202- 214.
|
5 |
严晗. 鲁棒非线性导引与控制律一体化设计研究[D]. 合肥: 中国科学技术大学, 2013.
|
|
YAN H. Research on robust nonlinear integrated guidance and control design[D]. Hefei: University of Science and Technology of China, 2013.
|
6 |
ZHOU H T , ZHAO H , HUANG H F , et al. Integrated guidance and control design of the suicide UCAV for terminal attack[J]. Journal of System Engineering and Electronics, 2017, 28 (3): 546- 555.
doi: 10.21629/JSEE.2017.03.14
|
7 |
LIU X H , HUANG W F , DU L . An integrated guidance and control approach in three-dimensional space for hypersonic missile constrained by impact angles[J]. ISA Trans, 2017, 66, 164- 175.
doi: 10.1016/j.isatra.2016.10.008
|
8 |
WANG W P , XIONG S S , WANG S T , et al. Three dimensional impact angle constrained integrated guidance and control for missiles with input saturation and actuator failure[J]. Aerospace Science and Technology, 2016, 53, 169- 187.
doi: 10.1016/j.ast.2016.03.015
|
9 |
HOU M , DUAN G S . Adaptive dynamic surface control for integrated missile guidance and autopilot[J]. International Journal of Automation and Computing, 2011, 8 (1): 122- 127.
doi: 10.1007/s11633-010-0563-z
|
10 |
AI X L , SHEN Y C , WANG L L . Adaptive integrated guidance and control for impact angle constrained interception with actuator saturation[J]. The Aeronautical Journal, 2019, 123 (1267): 1437- 1453.
doi: 10.1017/aer.2019.71
|
11 |
王鹏, 鲍存余, 汤国建. 高超声速飞行器滑翔段制导姿控一体化设计方法研究[J]. 战术导弹技术, 2020, (5): 127- 138.
|
|
WANG P , BAO C Y , TANG G J . Research on design of integrated guidance and attitude control for hypersonic vehicle in glide phase[J]. Tactical Missile Technology, 2020, (5): 127- 138.
|
12 |
ZHOU X D , WANG W H , LIU Z , et al. Impact angle constrained three-dimensional integrated guidance and control based on fractional integral terminal sliding mode control[J]. IEEE Access, 2019, 7, 126857- 126870.
doi: 10.1109/ACCESS.2019.2939418
|
13 |
MING C M , WANG X F , SUN R Z . A novel non-singular terminal sliding mode control-based integrated missile guidance and control with impact angle constraint[J]. Aerospace Science and Technology, 2019, 94, 105368.
doi: 10.1016/j.ast.2019.105368
|
14 |
JIANG S T , TIAN F H , SUN S . Integrated guidance and control design of rolling-guided projectile based on adaptive fuzzy control with multiple constraints[J]. Mathematical Problems in Engineering, 2019, 2019, 324- 337.
|
15 |
赖超, 王卫红, 周本春, 等. 三维攻击角度约束部分制导控制一体化设计[J]. 宇航学报, 2019, 40 (8): 937- 947.
|
|
LAI C , WANG W H , ZHOU B C , et al. Three-dimensional partial integrated guidance and control with impact angle constraints[J]. Journal of Astronautics, 2019, 40 (8): 937- 947.
|
16 |
LI G S , CHAO T , WANG S , et al. Integrated guidance and control for the fixed-trim vehicle against the maneuvering target[J]. International Journal of Control, Automation and Systems, 2020, 18 (6): 1518- 1529.
doi: 10.1007/s12555-018-0824-0
|
17 |
JIANG S , TIAN F Q , SUN S Y , et al. Integrated guidance and control of guided projectile with multiple constraints based on fuzzy adaptive and dynamic surface[J]. Defence Technology, 2020, 16 (6): 1130- 1141.
doi: 10.1016/j.dt.2019.12.003
|
18 |
SONG H T , ZHANG T . Fast integrated guidance and control with global convergence[J]. Journal of Central South University, 2019, 26 (3): 632- 639.
doi: 10.1007/s11771-019-4034-6
|
19 |
毛柏源, 李君龙, 张锐, 等. 大姿控力矩复合控制导弹制导控制一体化设计[J]. 现代防御技术, 2019, 47 (3): 56- 63.
doi: 10.3969/j.issn.1009-086x.2019.03.09
|
|
MAO B Y , LI J L , ZHANG R , et al. Integrated guidance and control for blended control missile using large attitude control moment[J]. Modern Defense Technology, 2019, 47 (3): 56- 63.
doi: 10.3969/j.issn.1009-086x.2019.03.09
|
20 |
WANG P M , ZHANG X , ZHU J T . Integrated missile guidance and control: a novel explicit reference governor using a disturbance observer[J]. IEEE Trans.on Industrial Electro-nics, 2019, 66 (7): 5487- 5496.
doi: 10.1109/TIE.2018.2868300
|
21 |
BOLENDER M, DOMAN D. A non-linear model for the longitudinal dynamics of a hypersonic air-breathing vehicle[C]//Proc. of the AIAA Guidance, Navigation, and Control Confe-rence and Exhibit, 2005.
|
22 |
BOLENDER M A , DOMAN D B . Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44 (2): 374- 387.
doi: 10.2514/1.23370
|
23 |
SIGTHORSSON D O , JANKOVSKY P , SERRANI A , et al. Robust linear output feedback control of an airbreathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics, 2008, 31 (4): 1052- 1066.
doi: 10.2514/1.32300
|
24 |
SIGTHORSSON D, SERRANI A. Development of linear parameter-varying models of hypersonic air-breathing vehicles[C]// Proc. of the AIAA Guidance, Navigation, and Control Confe-rence, 2009.
|
25 |
FIORENTINI L. Nonlinear adaptive controller design for air-breathing hypersonic vehicles[D]. Columbus: The Ohio State University, 2010.
|
26 |
ZONG Q , WANG F , TIAN B S , et al. Robust adaptive approximate backstepping control of a flexible air-breathing hypersonic vehicle with input constraint and uncertainty[J]. Proceedings of the Institution of Mechanical Engineers, Part Ⅰ: Journal of Systems and Control Engineering, 2014, 228 (7): 521- 539.
|
27 |
ZONG Q P , WANG F S , SU R , et al. Robust adaptive backstepping tracking control for a flexible air-breathing hypersonic vehicle subject to input constraint[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 229 (1): 10- 25.
|
28 |
BU X , WU X , HUANG J , et al. Minimal-learning-parameter based simplified adaptive neural back-stepping control of flexible air-breathing hypersonic vehicles without virtual controllers[J]. Neurocomputing, 2016, 175, 816- 825.
|
29 |
YE L , ZONG Q , TIAN B , et al. Control-oriented modeling and adaptive backstepping control for a nonminimum phase hypersonic vehicle[J]. ISA Trans, 2017, 70, 161- 172.
|
30 |
王建华, 刘鲁华, 王鹏, 等. 高超声速飞行器纵向平面滑翔飞行制导控制方法[J]. 国防科技大学学报, 2017, 39 (1): 58- 66.
|
|
WANG J H , LIU L H , WANG P , et al. Longitudinal integrated guidance and control scheme for hypersonic vehicle in glide phase[J]. Journal of National University of Defense Technology, 2017, 39 (1): 58- 66.
|