| 1 |
赵汉元. 航天飞行器再入动力学和制导[M]. 北京: 科学出版社, 2024: 143−201.
|
|
ZHAO H Y. Re-entry dynamics and guidance of spacecraft[M]. Beijing: Science Press, 2024: 143−201.
|
| 2 |
程国采. 航天飞行器最优控制理论与方法[M]. 北京: 国防工业出版社, 1991: 305−364.
|
|
CHENG G C. Optimal control theory and method for aerospace vehicles[M]. Beijing: National Defense Industry Press, 1991: 305−364.
|
| 3 |
包为民, 朱建文, 张洪波, 等. 高超声速飞行器全程制导方法[M]. 北京: 科学出版社, 2021: 12−52.
|
|
BAO W M, ZHU J W, ZHANG H B, et al. Full range guidance method for hypersonic aircraft[M]. Beijing: Science Press, 2021: 12−52.
|
| 4 |
BETTS J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21 (2): 193- 207.
|
| 5 |
GILL P E, MURAY W, SAUNDERS M A. SNOPT: an SQP algorithm for large-scale constrained optimization[J]. SIAM Review, 2005, 47 (1): 99- 131.
doi: 10.1137/S0036144504446096
|
| 6 |
HARGRAVES C R, PARIS S W. Direct trajectory optimization using nonlinear programming and collocation[J]. Journal of Guidance, Control, and Dynamics, 1987, 10 (4): 338- 342.
|
| 7 |
ELNAGAR G, KAZEMI M A, RAZZAGHI M. The pseudospectral method for discretizing optimal control problems[J]. IEEE Trans. on Automatic Control, 1995, 40 (10): 1793- 1796.
doi: 10.1109/9.467672
|
| 8 |
冯浩阳, 汪雪川, 岳晓奎, 等. 航天器轨道递推及Lambert问题计算方法综述[J]. 航空学报, 2023, 44 (13): 028027.
|
|
FENG H Y, WANG X C, YUE X K, et al. A survey of computational methods for spacecraft orbit ropagation and Lambert problems[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44 (13): 028027.
|
| 9 |
雍恩米, 唐国金, 陈磊. 基于Gauss伪谱法的高超声速飞行器再入轨迹快速优化[J]. 宇航学报, 2008, 29 (6): 1766- 1772.
|
|
YONG E M, TANG G J, CHEN L. Rapid trajectory optimization for hypersonic reentry vehicle via Gauss pseudospectral method[J]. Journal of Astronautics, 2008, 29 (6): 1766- 1772.
|
| 10 |
马宗占, 许志, 唐硕, 等. 一种改进的运载火箭迭代制导方法[J]. 航空学报, 2021, 42 (2): 324218.
|
|
MA Z Z, XU Z, TANG S, et al. Improved iterative guidance method for launch vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (2): 324218.
|
| 11 |
BRAUER G L, CORNICK D E, STEVENSON R. Capabilities and applications of the program to optimize simulated trajectories (POST). Program summary document[R]. Washington, D. C. : NASA, 1977.
|
| 12 |
KRAFT D. On the choice of minimization algorithms in parametric optimal control problems[M]. Berlin: Springer, 1981: 219−231.
|
| 13 |
BRYSON A E, HO Y C. Applied optimal control[M]. New York: Taylor & Francis Goup, 1975: 42−127.
|
| 14 |
SPURLOCK O F, WILLIAMS C H. DUKSUP: a computer program for high thrust launch vehicle trajectory design and optimization[C]//Proc. of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014.
|
| 15 |
BERTRAND R, EPENOY R. New smoothing techniques for solving bang-bang optimal control problems numerical results and statistical interpretation[J]. Optimal Control Applications & Methods, 2002, 23 (4): 171- 197.
|
| 16 |
彭坤, 彭睿, 黄震, 等. 求解最优月球软着陆轨道的隐式打靶法[J]. 航空学报, 2019, 40 (7): 322641.
|
|
PENG K, PENG R, HUANG Z, et al. Implicit shooting method to solve optimal lunar soft landing trajectory[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40 (7): 322641.
|
| 17 |
廖宇新, 李惠峰, 包为民. 基于间接Radau伪谱法的滑翔段轨迹跟踪制导律[J]. 宇航学报, 2015, 36 (12): 1398- 1405.
|
|
LIAO Y X, LI H F, BAO W M. Gliding trajectory tracking guidance law based on indirect Radau psedo-spectral method[J]. Journal of Astronautics, 2015, 36 (12): 1398- 1405.
|
| 18 |
IZZO D, MARTENS M, PAN B. A survey on artificial intelligence trends in spacecraft guidance dynamics and control[J]. Astrodynamics, 2019, 3, 287- 299.
doi: 10.1007/s42064-018-0053-6
|
| 19 |
GORBAN A N, WUNSCH D C. The general approximation theory[C]//Proc. of the International Joint Conference on Neural Networks, Anchorage, 1998: 1271−1274.
|
| 20 |
刘宇航, 杨洪伟, 李爽. 小推力最优轨迹协态估计的高效机器学习方法[J]. 宇航学报, 2022, 43 (5): 594- 602.
|
|
LIU Y H, YANG H W, LI S. Efficient machine learning method for costate estimation of low thrust optimal trajectories[J]. Journal of Astronautics, 2022, 43 (5): 594- 602.
|
| 21 |
GEIGER B R, SCHMIDT E M, HORN J F. Use of neural networks approximation in multiple-unmanned aerial vehicle trajectory optimization[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference, 2009.
|
| 22 |
TAILOR D, IZZO D. Learning the optimal stage-feedback via supervised imitation learning[J]. Astrodynamics, 2019, 3, 361- 374.
doi: 10.1007/s42064-019-0054-0
|
| 23 |
IZZO D, OZTURK E. Real-time guidance for low-thrust transfers using neural networks[J]. Journal of Guidance, Control, and Dynamics, 2021, 44 (2): 315- 327.
|
| 24 |
陈克俊, 刘鲁华, 孟云鹤. 远程火箭飞行动力学与制导[M]. 北京: 国防工业出版社, 2014: 201−254.
|
|
CHEN K J, LIU L H, MENG Y H. Launch vehicle flight dynamics guidance[M]. Beijing: National Defense Industry Press, 2014: 201−254.
|
| 25 |
MCFALL K S, MAHAN J R. Artificial neural network method for of boundary value problems with exact satisfaction of arbitrary boundary conditions[J]. IEEE Trans. on Neural Networks, 2009, 20(8): 1221−1233.
|
| 26 |
WANG Z, GUET C. Deep learning in physics: a study of dielectric quasi-cubic particles in a uniform electric field[J]. IEEE Trans. on Emerging Topics in Computational Intelligence, 2022, 6 (3): 429- 438.
|
| 27 |
BAYDIN A G, PEARLMUTTER B A, RADUL A A, et al. Automatic differentiation in machine learning: a survey[J]. Journal of Machine Learning Research, 2017, 18(1): 5595−5637.
|
| 28 |
RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378, 686- 707.
doi: 10.1016/j.jcp.2018.10.045
|
| 29 |
KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Review Physics, 2021, 3, 422- 440.
doi: 10.1038/s42254-021-00314-5
|
| 30 |
WANG Z, GUET C. Self-Consistent learning of neural dynamical systems from noisy time series[J]. IEEE Trans. on Emerging Topics in Computational Intelligence, 2022, 6 (5): 1103- 1112.
|
| 31 |
ANAGNOSTOPOULOS S J, TOSCANO J D, STERGIOPULOS N. Residual-based attention in physics-informed neural networks[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 421: 116805.
|