系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (12): 4174-4185.doi: 10.12305/j.issn.1001-506X.2025.12.29

• 制导、导航与控制 • 上一篇    

基于深度学习的弹道优化方法

王哲, 李志文, 孙均政, 张增辉   

  1. 北京机电工程总体设计部,北京 100039
  • 收稿日期:2024-07-29 修回日期:2025-01-26 出版日期:2025-06-09 发布日期:2025-06-09
  • 通讯作者: 王哲
  • 作者简介:李志文(1978—),男,研究员,硕士,主要研究方向为飞行器设计
    孙均政(1981—),男,研究员,硕士,主要研究方向为飞行器设计
    张增辉(1985—),男,研究员,博士,主要研究方向为飞行器设计

Ballistic optimization method based on deep learning

Zhe WANG, Zhiwen LI, Junzheng SUN, Zenghui ZHANG   

  1. Beijing System Design Institute of Electro-Mechanic Engineering,Beijing 100039,China
  • Received:2024-07-29 Revised:2025-01-26 Online:2025-06-09 Published:2025-06-09
  • Contact: Zhe WANG

摘要:

针对飞行器弹道优化问题,提出一种基于深度学习的最优控制求解方法。有别于现有直接法和间接法,该方法使用神经网络对控制变量进行参数化构造,使得采用往返积分求解非线性哈密顿系统的多点边值问题成为可能,避免了协态变量初值猜测问题。基于Pontryagin极大值原理构造损失函数,并通过随机梯度下降算法对控制变量进行寻优。相较于现有深度学习算法,该方法无需预先生成数据集,也不需要对飞行力学方程进行化简,适用于航天飞行器弹道设计。以美国民兵-3导弹为例,该方法通过协同优化第一子级秒耗量剖面和主动段俯仰角程序,可在满足飞行过程中各项约束条件下实现增程,证明了所提方法的有效性。

关键词: 导弹, 弹道优化, 最优控制, 深度学习

Abstract:

A deep learning based optimal control solution method is proposed for aircraft ballistic optimization. Unlike existing direct and indirect methods, this method uses neural networks to parameterize the control variables, making it possible to solve the multi-point boundary value problem of nonlinear Hamiltonian systems using back and forth integration, and avoiding the problem of guessing the initial values of covariates. Construct a loss function based on the Pontryagin maximum principle and optimize the control variables using stochastic gradient descent algorithm. Compared to the existing deep learning algorithms, this method does not require pre-generation of datasets or simplification of flight mechanics equations, making it suitable for spacecraft ballistic design. Taking Minuteman 3 missile as an example, this method achieves range extension while satisfying various constraints during flight by synergistically optimizing the first-level second consumption profile and active stage pitch angle program, demonstrating the effectiveness of the proposed method.

Key words: missile, ballistic optimization, optimal control, deep learning

中图分类号: