系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (3): 871-882.doi: 10.12305/j.issn.1001-506X.2025.03.19

• 系统工程 • 上一篇    

基于多批次增长试验的舰空导弹命中概率贝叶斯估计

刘昊邦1, 陈童1,*, 胡涛1, 李明贵1,2, 杜凯3   

  1. 1. 海军工程大学管理工程与装备经济系, 湖北 武汉 430033
    2. 宇航动力学国家重点实验室, 海南 三亚 572000
    3. 陆军步兵学院石家庄校区, 河北 石家庄 050081
  • 收稿日期:2023-08-21 出版日期:2025-03-28 发布日期:2025-04-18
  • 通讯作者: 陈童
  • 作者简介:刘昊邦 (1998—), 男, 博士研究生, 主要研究方向为装备管理与保障、系统工程
    陈童 (1980—), 男, 副教授, 博士, 主要研究方向为装备管理与保障、系统工程
    胡涛 (1970—), 男, 教授, 博士, 主要研究方向为装备管理与保障、系统工程
    李明贵 (1984—), 男, 工程师, 硕士研究生, 主要研究方向为装备管理与保障、质量管理、系统工程
    杜凯 (1991—), 男, 讲师, 硕士, 主要研究方向为装备供应保障
  • 基金资助:
    国家自然科学基金(71501183)

Bayesian estimation of ship-to-air missile hit probability based on multiple batches growth tests

Haobang LIU1, Tong CHEN1,*, Tao HU1, Minggui LI1,2, Kai DU3   

  1. 1. Department of Management Engineering and Equipment Economics, Naval University of Engineering, Wuhan 430033, China
    2. State Key Laboratory of Astronautic Dynamics, Sanya 572000, China
    3. Shijiazhuang Campus, The Army Infantry College of PLA, Shijiazhuang 050081, China
  • Received:2023-08-21 Online:2025-03-28 Published:2025-04-18
  • Contact: Tong CHEN

摘要:

现有舰空导弹命中概率估计方法主要从单批次试验角度研究, 未能考虑命中概率多批次增长试验特点的问题, 致使命中概率准确估计较为困难。本文以舰空导弹二维正态射弹散布现象为切入点, 基于贝叶斯方法选取正态-逆伽马分布作为射弹散布参数的先验分布, 融合先验信息弥补小样本试验数据量不足问题, 在各批次试验的射弹散布参数值之间建立顺序约束关系, 并利用马尔可夫链-蒙特卡罗(Markov chain-Monte Carlo, MCMC)方法结合吉布斯抽样进行贝叶斯求解, 从而实现融合多批次增长试验信息的目的。研究结果表明, 该方法相比现有单批次试验命中概率估计方法能够考虑多批次增长试验的特点, 为舰空导弹命中概率估计提供借鉴。

关键词: 舰空导弹, 命中概率, 多批次增长试验, 射弹散布, 贝叶斯, 马尔可夫链-蒙特卡罗

Abstract:

The existing ship-to-air missile hit probability estimation methods are mainly studied from the perspective of single batch tests, but fail to consider the characteristics of multiple batches growth tests, which makes it difficult to accurately estimate the hit probability. In this paper, the two-dimensional normal projectile dispersion phenomenon of ship-to-air missile is taken as the entry point, the normal-inverse Gamma distribution is selected as the prior distribution of projectile dispersion parameters based on Bayesian method, and the prior information is merged to make up for the insufficient data in the small sample tests. The sequential constraint relationship is established between the projectile dispersion parameter values of each batch of tests, and the Markov chain-Monte Carlo (MCMC) method is combined with Gibbs sampling for Bayesian solution, so as to achieve the purpose of fusing multiple batches growth tests information. The research results show that this method can consider the characteristics of multiple batches growth tests compared with the existing single batch tests hit probability estimation method, and provide reference for ship-to-air missile hit probability estimation.

Key words: ship-to-air missile, hit probability, multiple batches growth tests, projectile dispersion, Bayesian, Markov chain-Monte Carlo (MCMC)

中图分类号: