1 |
闫志强, 蒋英杰, 谢红卫. 基于顺序约束的命中概率多批次试验统计评定方法[J]. 宇航学报, 2010, 31 (4): 1206- 1211.
doi: 10.3873/j.issn.1000-1328.2010.04.043
|
|
YAN Z Q , JIANG Y J , XIE H W . Statistical evaluation method of hit probability for multi-batch tests based on sequence constraints[J]. Journal of Astronautics, 2010, 31 (4): 1206- 1211.
doi: 10.3873/j.issn.1000-1328.2010.04.043
|
2 |
ZHAI C L , CHEN X W . Simulation model for studying the effect of function distribution on the evaluation of building da-mage caused by missile attack[J]. Defence Science Journal, 2023, 73 (5): 541- 550.
doi: 10.14429/dsj.73.18317
|
3 |
HUANG J , WU P F , LI X B . Research on dynamically corrective hit probability model of anti-air missile integrated in war game system[J]. Engineering Letters, 2022, 30 (2): 57- 68.
|
4 |
QIU X Q , GAO C S , JING W X . Maneuvering penetration strategies of ballistic missiles based on deep reinforcement learning[J]. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2022, 236 (16): 3494- 3504.
doi: 10.1177/09544100221088361
|
5 |
CORRIVEAU D , RABBATH C , GOUDREAU A . Effect of the firing position on aiming error and probability of hit[J]. Defence Technology, 2019, 15 (5): 111- 126.
|
6 |
KHAIKOV L V . Assessment of the single shot hit probability as a function of the horizontal range taking into account different target types and points of aim[J]. Vojnotehnicki Glasnik, 2019, 67 (1): 55- 68.
|
7 |
李康, 史宪铭, 李广宁, 等. 基于正态-逆伽马分布的反巡航导弹命中概率估计方法[J]. 系统工程与电子技术, 2022, 44 (8): 2621- 2627.
|
|
LI K , SHI X M , LI G N , et al. Estimation method of anti-cruise missile hit probability based on normal-inverse gamma distribution[J]. Systems Engineering and Electronics, 2022, 44 (8): 2621- 2627.
|
8 |
刘昊邦, 史宪铭, 赵美, 等. 基于正态-逆威沙特分布的地空导弹命中概率贝叶斯估计[J]. 兵工学报, 2024, 45 (1): 339- 348.
|
|
LIU H B , SHI X M , ZHAO M , et al. Bayesian estimation of surface-to-air missile hit probability based on normal-inverse Wishart distribution[J]. Acta Armamentarii, 2024, 45 (1): 339- 348.
|
9 |
SUN Y L . Research on ship-to-air missile fire distribution method based on improved genetic algorithm[J]. Computer Informatization and Mechanical System, 2023, 6 (5): 78- 92.
|
10 |
WANG Y T , WANG H Y , LIANG H M , et al. Research on horizontal damage zone airspace of ship-to-air missile under cooperative operation[J]. Advances in Computer Science and Ubiquitous Computing, 2018, 7 (2): 654- 660.
|
11 |
赵永涛, 焦纲领, 王军生, 等. 舰舰协同制导舰空导弹中末目标交班问题研究[J]. 北京理工大学学报, 2022, 42 (9): 953- 960.
|
|
ZHAO Y T , JIAO G L , WANG J S , et al. Research on midpoint shift of ship-to-air guided missile[J]. Journal of Beijing Institute of Technology, 2022, 42 (9): 953- 960.
|
12 |
刘泽乾, 纪义国, 杨林, 等. 制导化改进的常规航空炸弹命中精度分析[J]. 系统工程与电子技术, 2020, 42 (9): 2071- 2076.
|
|
LIU Z Q , JI Y G , YANG L , et al. Analysis of hit accuracy of conventional aerial bomb with improved guidance[J]. Systems Engineering and Electronics, 2020, 42 (9): 2071- 2076.
|
13 |
LIU S T , WANG L T , WEI B Y . Modeling and simulation method of flight trajectory for ship-to-air missile based on vector rotation[J]. Journal of Physics: Conference Series, 2018, 10 (1): 60- 78.
|
14 |
CIVEK B C , ERTIN E . Bayesian sparse blind deconvolution using MCMC methods based on normal-inverse-gamma prior[J]. IEEE Trans.on Signal Processing, 2022, 70 (6): 1256- 1269.
|
15 |
ZHOU Q , GUAN Y T . On the null distribution of Bayes factors in linear regression[J]. Journal of the American Statistical Association, 2018, 13 (23): 112- 126.
|
16 |
ZHANG Y Y , RONG T Z , LI M M , et al. The empirical Bayes estimators of the mean and variance parameters of the normal distribution with a conjugate normal-inverse-Gamma prior by the moment method and the MLE method[J]. Communications in Statistics-Theory and Methods, 2019, 48 (9): 2286- 2304.
doi: 10.1080/03610926.2018.1465081
|
17 |
CAI M Y , VAN B S , VINK G . Joint distribution properties of fully conditional specification under the normal linear model with normal inverse-Gamma priors[J]. Scientific Reports, 2023, 13 (1): 33- 46.
doi: 10.1038/s41598-022-27202-x
|
18 |
LIU H B , SHI X M , CHEN X J , et al. Bayesian inference of ammunition consumption based on normal-inverse Gamma distribution[J]. Discrete Dynamics in Nature and Society, 2022, 12 (3): 44- 56.
|
19 |
SHANA S , JOHAANNES K , ANDREAS B , et al. BayesPostEst: an R package to generate postestimation quantities for Bayesian MCMC estimation[J]. Journal of Open Source Software, 2019, 4 (42): 90- 101.
|
20 |
KHARAZMI O , HAMEDANI G G , CORDEIRO G M . Log-mean distribution: applications to medical data, survival regression, Bayesian and non-Bayesian discussion with MCMC algorithm[J]. Journal of Applied Statistics, 2023, 5 (5): 63- 72.
|
21 |
MINH N N , MINH N T , ROHITASH C . Sequential reversible jump MCMC for dynamic Bayesian neural networks[J]. Neurocomputing, 2023, 7 (3): 156- 168.
|
22 |
NGOC N T , HOANG B N . Nexus between tourism and ecological footprint in RCEP: fresh evidence from Bayesian MCMC random-effects sampling[J]. Cogent Business Management, 2023, 10 (1): 34- 45.
|
23 |
THEODORE P . Approximate blocked Gibbs sampling for Bayesian neural networks[J]. Statistics and Computing, 2023, 33 (5): 122- 134.
|
24 |
JUN K , SHINTARO H . Approximate Gibbs sampler for Bayesian Huberized lasso[J]. Journal of Statistical Computation and Simulation, 2023, 93 (1): 55- 63.
|
25 |
PAUL L D M . Bayesian networks: regenerative Gibbs samplings[J]. Communications in Statistics-Simulation and Computation, 2022, 51 (12): 113- 124.
|
26 |
BUMENG Z , CHAO G . Mixing time of Metropolis-Hastings for Bayesian community detection[J]. Journal of Machine Learning Research, 2021, 22 (3): 99- 108.
|
27 |
REUSCHEN S , XU T , NOWAK W . Bayesian inversion of hie-rarchical geostatistical models using a parallel-tempering sequential Gibbs MCMC[J]. Advances in Water Resources, 2020, 14 (5): 92- 102.
|
28 |
SHENG Y . Bayesian estimation of the four-parameter IRT model using Gibbs sampling[J]. Quantitative Research in Education, 2015, 2 (3): 72- 88.
|
29 |
THOMPSON J , PALMER T , MORENO S . Bayesian analysis in stata with WinBUGS[J]. Stata Journal, 2006, 6 (4): 530- 549.
|
30 |
WILLIAMS M S , EBEL E D , HOETING J A . Bayesian anal-ysis for food-safety risk assessment: evaluation of dose-response functions within WinBUGS[J]. Journal of Statistical Software, 2011, 43 (2): 1- 14.
|
31 |
JEVDJEVIC M , YOUN J H , PETERSOHN S , et al. MSR110 a comparison of stan versus WinBUGS software for conducting Bayesian hazard ratio-based network meta-analysis[J]. Value in Health, 2022, 25 (12): 50- 62.
|
32 |
PERRAKIS K , NTZOUFRAS I . Bayesian variable selection using the hyper-g prior in WinBUGS[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2018, 10 (6): 73- 81.
|