系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (12): 4091-4107.doi: 10.12305/j.issn.1001-506X.2024.12.18

• 系统工程 • 上一篇    

基于评分缓存的节点序空间下BN结构学习

高晓光, 闫栩辰, 王紫东, 刘晓寒, 冯奇   

  1. 西北工业大学电子信息学院, 陕西 西安 710129
  • 收稿日期:2023-08-07 出版日期:2024-11-25 发布日期:2024-12-30
  • 通讯作者: 高晓光
  • 作者简介:高晓光(1957—), 女, 教授, 博士, 主要研究方向为贝叶斯网络学习、航空火力控制与作战效能
    闫栩辰(1999—), 女, 硕士研究生, 主要研究方向为贝叶斯网络结构学习
    王紫东(1997—), 男, 博士研究生, 主要研究方向为贝叶斯网络结构学习、因果发现
    刘晓寒(1997—), 男, 博士研究生, 主要研究方向为贝叶斯网络结构学习
    冯奇(1999—), 男, 硕士研究生, 主要研究方向为时空数据建模
  • 基金资助:
    国家自然科学基金(61573285);国家自然科学基金(62003267)

Bayesian network structure learning based on score cache in node ordering space

Xiaoguang GAO, Xuchen YAN, Zidong WANG, Xiaohan LIU, Qi FENG   

  1. School of Electronic and Information, Northwestern Polytechnical University, Xi'an 710129, China
  • Received:2023-08-07 Online:2024-11-25 Published:2024-12-30
  • Contact: Xiaoguang GAO

摘要:

针对大规模贝叶斯网络结构学习容易陷入局部最优的问题, 提出一种节点序空间下迭代局部搜索算法。在局部搜索环节, 设计评分缓存的选择插入算子和次优解的容忍策略, 评估自适应的纵向插入邻域, 攻克由盲目搜索导致的邻域受限问题。在迭代重启环节, 采用等价类结构和深度优先遍历的转换机制, 避免由随机扰动导致的评分退化问题。通过相融实验分别验证搜索和迭代算法的有效性。实验结果表明,相较于现有的主流方法, 迭代局部搜索算法能够精确地学习大规模网络结构。

关键词: 贝叶斯网络, 结构学习, 节点序, 局部搜索, 迭代重启

Abstract:

Aiming at the problem that large-scale Bayesian network structure learning falls into local optima easily, an iterative local search algorithm in node ordering space is proposed. During the local search step, the selective insertion operator based on score cache and the tolerance strategy for suboptimal solutions are designed. The adaptive longitudinal insertion neighborhood domain is evaluated to overcome the limited neighborhood domain problem caused by blind search. During the iterative restart step, the conversion mechanism of equivalent class structure and depth-first search (DFS) is adopted to prevent score degradation problem caused by random disturbances. After verifying the effectiveness of the search and iterative algorithms through fusion experiments, the experimental results show that compared with existing mainstream methods, the iterative local search algorithm can learn large-scale network structures accurately.

Key words: Bayesian network, structure learning, node ordering, local search, iterative restart

中图分类号: