系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (12): 4091-4107.doi: 10.12305/j.issn.1001-506X.2024.12.18
• 系统工程 • 上一篇
高晓光, 闫栩辰, 王紫东, 刘晓寒, 冯奇
收稿日期:
2023-08-07
出版日期:
2024-11-25
发布日期:
2024-12-30
通讯作者:
高晓光
作者简介:
高晓光(1957—), 女, 教授, 博士, 主要研究方向为贝叶斯网络学习、航空火力控制与作战效能基金资助:
Xiaoguang GAO, Xuchen YAN, Zidong WANG, Xiaohan LIU, Qi FENG
Received:
2023-08-07
Online:
2024-11-25
Published:
2024-12-30
Contact:
Xiaoguang GAO
摘要:
针对大规模贝叶斯网络结构学习容易陷入局部最优的问题, 提出一种节点序空间下迭代局部搜索算法。在局部搜索环节, 设计评分缓存的选择插入算子和次优解的容忍策略, 评估自适应的纵向插入邻域, 攻克由盲目搜索导致的邻域受限问题。在迭代重启环节, 采用等价类结构和深度优先遍历的转换机制, 避免由随机扰动导致的评分退化问题。通过相融实验分别验证搜索和迭代算法的有效性。实验结果表明,相较于现有的主流方法, 迭代局部搜索算法能够精确地学习大规模网络结构。
中图分类号:
高晓光, 闫栩辰, 王紫东, 刘晓寒, 冯奇. 基于评分缓存的节点序空间下BN结构学习[J]. 系统工程与电子技术, 2024, 46(12): 4091-4107.
Xiaoguang GAO, Xuchen YAN, Zidong WANG, Xiaohan LIU, Qi FENG. Bayesian network structure learning based on score cache in node ordering space[J]. Systems Engineering and Electronics, 2024, 46(12): 4091-4107.
表3
现有搜索算法与GBSC算法的BIC评分和运行时间"
数据集 | OBS算法 | INOBS算法 | WINOBS算法 | PSCOBS算法 | GBSC算法 | |||||||||
BIC评分 | 运行时间/s | BIC评分 | 运行时间/s | BIC评分 | 运行时间/s | BIC评分 | 运行时间/s | BIC评分 | 运行时间/s | |||||
Asia-1000 | -2 303.4±33.5 | 0 | -2 292.6±32.0 | 0 | -2 292.2±31.9 | 0 | -2 293.3±31.8 | 0 | -2 291.2±32.0 | 0 | ||||
Child-1000 | -13 331.9±275.3* | 0 | -12 786.1±109.5 | 0.1 | -12 784.9±102.4 | 0.3 | -12 783.7±102.1 | 0.1 | -12 779.4±117.2 | 0.1 | ||||
Insurance-1000 | -15 147.0±235.1* | 0 | -14 570.3±138.7 | 0.1 | -14 573.0±154.3 | 0.6 | -14 576.8±145.9 | 0.3 | -14 568.8±149.6 | 0.3 | ||||
Alarm-1000 | -12 351.7±266.9* | 0 | -11 676.0±176.2 | 0.3 | -11 657.5±176.0 | 1.8 | -11 657.5±178.0 | 0.8 | -11 655.1±180.5 | 0.8 | ||||
Hailfinder-1000 | -54 150.8±627.6* | 0 | -53 215.4±117.0 | 0.4 | -53 213.3±113.5 | 2.6 | -53 205.3±121.5 | 0.6 | -53 204.4±118.5 | 0.5 | ||||
Hepar2-1000 | -33 532.2±171.2* | 0 | -33 268.9±152.3 | 0.7 | -33 265.5±151.7 | 3.9 | -33 263.8±153.9 | 0.5 | -33 260.1±152.4 | 0.5 | ||||
Win95pts-1000 | -11 065.4±185.2* | 0 | -10 448.5±174.2 | 2.8 | -10 438.6±180.8 | 19.0 | -10 434.6±178.5 | 8.0 | -10 431.8±184.6 | 6.9 | ||||
Pathfinder-1000 | -36 650.5±560.2* | 0 | -34 754.3±454.5 | 4.5 | -34 612.6±392.5 | 36.4 | -34 628.0±387.5 | 14.2 | -34 591.2±402.1 | 8.4 | ||||
Andes-1000 | -100 411.5±560.1* | 0 | -96 535.1±225.0 | 21.3 | -96 485.9±231.0 | 163.3 | -96 452.9±237.9 | 32.9 | -96 447.0±231.7 | 26.3 | ||||
Asia-5000 | -11 271.4±65.9 | 0 | -11 250.6±65.8 | 0 | -11 249.9±64.7 | 0 | -11 249.9±66.4 | 0 | -11 248.9±66.7 | 0 | ||||
Child-5000 | -64 071.3±965.0* | 0 | -61 846.4±301.0 | 0.1 | -61 818.9±251.7 | 0.5 | -61 814.4±330.9 | 0.2 | -61 791.3±319.2 | 0.2 | ||||
Insurance-5000 | -70 942.7±939.8* | 0 | -67 897.0±300.0 | 0.3 | -67 852.7±244.5 | 1.3 | -67 867.5±274.4 | 0.6 | -67 846.6±267.0 | 0.6 | ||||
Alarm-5000 | -56 958.4±643.0* | 0 | -54 050.5±288.2 | 0.5 | -54 005.7±266.2 | 3.0 | -54 005.3±268.4 | 1.4 | -53 974.5±269.7 | 1.4 | ||||
Hailfinder-5000 | -257 927.7±2289.2* | 0 | -252 226.4±299.2 | 0.8 | -252 181.5±305.2 | 4.7 | -252 137.3±301.1 | 2.1 | -252 130.0±292.8 | 1.4 | ||||
Hepar2-5000 | -165 248.0±679.4* | 0 | -163 738.2±328.0 | 1.2 | -163 727.4±326.5 | 6.6 | -163 718.0±324.1 | 1.8 | -163 704.6±329.5 | 1.7 | ||||
Win95pts-5000 | -52 287.6±663.5* | 0 | -49 082.2±307.2 | 5.1 | -49 076.4±321.0 | 31.5 | -49 022.9±343.6 | 18.2 | -49 021.6±334.1 | 16.1 | ||||
Pathfinder-5000 | -162 495.0±2 821.9* | 0.1 | -148 717.4±527.6 | 5.3 | -148 628.6±525.9 | 32.7 | -148 613.4±495.0 | 20.9 | -148 581.9±512.2 | 15.4 | ||||
Andes-5000 | -497 126.1±3 033.3* | 0.1 | -475 832.1±584.9* | 25.9 | -475 422.6±497.5 | 200.3 | -475 375.6±506.2 | 63.4 | -475 294.4±420.0 | 45.8 | ||||
Asia-10000 | -22 453.3±125.3 | 0 | -22 433.3±119.8 | 0 | -22 431.2±120.6 | 0 | -22 431.6±120.2 | 0 | -22 431.2±120.7 | 0 | ||||
Child-10000 | -126 543.6±1 593.5* | 0 | -123 051.8±355.8 | 0.1 | -123 007.6±282.2 | 0.6 | -123 013.0±307.5 | 0.2 | -123 005.8±284.4 | 0.2 | ||||
Insurance-10000 | -139 636.7±1 780.5* | 0 | -133 954.8±325.2 | 0.3 | -133 797.2±365.1 | 2.0 | -133 893.4±331.0 | 0.7 | -133 856.1±364.0 | 0.7 | ||||
Alarm-10000 | -112 285.2±1 151.2* | 0 | -106 556.1±434.8 | 0.6 | -106 526.8±456.7 | 3.8 | -106 518.4±416.4 | 1.9 | -106 516.8±425.9 | 1.8 | ||||
Hailfinder-10000 | -510 507.2±4 335.2* | 0 | -499 586.9±333.6 | 1.9 | -499 542.6±336.6 | 11.7 | -499 549.5±408.5 | 6.4 | -499 515.5±404.2 | 5.2 | ||||
Hepar2-10000 | -329 423.4±1 060.6* | 0 | -326 953.4±508.1 | 1.7 | -326 918.5±509.3 | 9.3 | -326 921.7±491.2 | 3.3 | -326 898.4±495.9 | 2.7 | ||||
Win95pts-10000 | -103 307.7±1 842.4* | 0 | -97 140.7±608.0 | 6.0 | -97 143.4±608.4 | 36.4 | -97 135.0±612.7 | 23.5 | -96 995.9±568.2 | 19.0 | ||||
Pathfinder-10000 | -311 090.8±8 049.7* | 0.1 | -281 102.2±693.9* | 7.4 | -280 756.4±616.2 | 38.9 | -280 617.9±611.0 | 20.6 | -280 526.7±574.8 | 19.6 | ||||
Andes-10000 | -1 001 135.0±5 230.8* | 0 | -953 897.3±2 865.0 | 21.8 | -953 215.8±2 778.2 | 160.2 | -953 290.6±3 036.0 | 45.8 | -952 881.7±2 765.0 | 32.3 | ||||
W/D/L | 24/3/0 | 2/25/0 | 0/27/0 | 0/27/0 | - |
表4
PC-Stable, GFCI, MMHC和GB-DF算法的BIC评分对比"
数据集 | PC-Stable | GFCI | MMHC | GB-DF |
Asia-1000 | -2 470.1±51.3* | -2 291.3±32.2 | -2 479.9±44.6* | -2 291.1±31.9 |
Child-1000 | -14 600.4±548.2* | -13 334.7±247.2* | -13 207.4±173.0* | -12 775.5±110.6 |
Insurance-1000 | -16 213.3±159.7* | -15 400.2±326.6* | -15 834.4±252.4* | -14 516.8±127.4 |
Alarm-1000 | -15 480.2±575.3* | -12 428.9±429.0* | -14 004.1±315.6* | -11 643.5±180.7 |
Hailfinder-1000 | -60 327.0±524.5* | -60 205.4±10 417.2* | -59 209.4±165.3* | -53 187.7±121.1 |
Hepar2-1000 | -33 792.3±165.9* | -33 519.0±185.6* | -33 561.8±156.0* | -33 255.2±151.5 |
Win95pts-1000 | -13 111.6±394.7* | -11 089.5±644.3* | -12 921.6±340.3* | -10 411.9±180.2 |
Pathfinder-1000 | -61 003.6±531.2* | -38 841.4±4 130.6* | -55 094.5±573.8* | -34 667.9±385.4 |
Andes-1000 | -104 991.4±1 406.6* | -98 901.2±1 922.6* | -100 217.6±270.8* | -96 334.0±229.3 |
Asia-5000 | -12 162.1±99.7* | -11 250.7±66.6 | -12 158.7±95.2* | -11 248.1±66.0 |
Child-5000 | -63 777.5±1 385.7* | -62 925.0±330.2* | -66 413.7±799.6* | -61 782.6±317.8 |
Insurance-5000 | -73 691.1±821.0* | -72 611.0±2 847.7* | -72 843.9±595.4* | -67 718.7±268.5 |
Alarm-5000 | -67 241.4±3 129.0* | -55 718.8±1 268.0* | -61 612.7±1 186.1* | -53 962.5±276.2 |
Hailfinder-5000 | -294 300.1±2 758.8* | -268 969.0±13 147.0* | -288 414.6±310.4* | -252 051.8±307.5 |
Hepar2-5000 | -166 060.5±465.1* | -165 553.6±367.6* | -165 032.9±330.5* | -163 678.8±318.5 |
Win95pts-5000 | -60 129.2±1 486.9* | -52 850.9±3 701.7* | -59 239.4±951.5* | -48 971.1±331.9 |
Pathfinder-5000 | -297 497.2±2 279.4* | -178 502.3±36 556.0* | -283 083.2±1 131.7* | -148 546.8±513.6 |
Andes-5000 | -513 214.1±9 998.8* | -493 742.3±13 756.1* | -484 179.7±803.4* | -474 902.6±485.4 |
Asia-10000 | -24 266.8±153.6* | -22 454.4±152.1 | -24 255.0±173.3* | -22 430.3±120.4 |
Child-10000 | -127 083.0±1 878.0* | -125 265.1±283.0* | -133 227.7±570.3* | -122 990.6±292.9 |
Insurance-10000 | -142 906.7±1 955.1* | -147 837.6±7 329.3* | -144 500.2±1 561.0* | -133 631.7±295.7 |
Alarm-10000 | -126 881.2±8 392.2* | -113 240.5±2 140.0* | -126 244.1±2 211.6* | -106 491.0±423.2 |
Hailfinder-10000 | -582 295.6±5 262.5* | -563 303.7±41 475.4* | -574 629.2±266.3* | -499 356.0±392.1 |
Hepar2-10000 | -332 279.4±883.6* | -330 654.0±619.4* | -328 860.6±532.4* | -326 818.2±473.4 |
Win95pts-10000 | -117 244.9±4 873.1* | -104 896.0±7 863.3* | -114 273.2±982.2* | -96 761.8±553.0 |
Pathfinder-10000 | -592 945.0±1 133.4* | -351 817.2±62 338.8* | -561 484.3±2 287.1* | 280 451.0±532.1 |
Andes-10000 | -1 031 871.0±6 610.5* | -976 332.9±24 497.0* | -959 375.2±2191.9* | -951 983.0±2 684.0 |
W/D/L | 27/0/0 | 24/3/0 | 27/0/0 | - |
表5
SaiyanH, FGES, MAHC和GB-DF算法的BIC评分对比"
数据集 | SaiyanH | FGES | MAHC | GB-DF |
Asia-1000 | -2 298.5±31.4 | -2 291.2±31.8 | -2 292.1±31.5 | -2 291.1±31.9 |
Child-1000 | -12 779.9±110.7 | -12 947.8±111.2* | -12 947.8±142.9* | -12 775.5±110.6 |
Insurance-1000 | -14 615.1±152.3* | -14 693.3±139.1* | -15 048.1±184.2* | -14 516.8±127.4 |
Alarm-1000 | -11 794.2±197.4* | -11 789.9±187.0* | -12 125.4±195.3* | -11 643.5±180.7 |
Hailfinder-1000 | -54 776.9±740.0* | -53 904.0±118.6* | -53 318.9±121.6* | -53 187.7±121.1 |
Hepar2-1000 | -33 366.3±153.3* | -33 470.3±151.2* | -33 281.4±152.7 | -33 255.2±151.5 |
Win95pts-1000 | -10 526.1±208.0 | -10 658.7±197.7* | -11 122.8±197.9* | -10 411.9±180.2 |
Pathfinder-1000 | -39 435.8±703.6* | -35 885.0±399.9* | -36 660.8±469.1* | -34 667.9±385.4 |
Andes-1000 | NA | -97 992.4±303.3* | -96 164.6±266.6 | -96 334.0±229.3 |
Asia-5000 | -11 268.5±80.7 | -11 248.1±66.0 | -11 256.0±64.0 | -11 248.1±66.0 |
Child-5000 | -61 847.2±328.2 | -62 857.1±321.3* | -62 100.7±497.5* | -61 782.6±317.8 |
Insurance-5000 | -68 556.8±306.3* | -69 179.1±317.7* | -69 543.3±287.8* | -67 718.7±268.5 |
Alarm-5000 | -54 304.8±326.7* | -55 041.0±380.2* | -55 490.3±481.2* | -53 962.5±276.2 |
Hailfinder-5000 | -255 508.7±523.1* | -257 603.3±403.2* | -253 137.2±326.0* | -252 051.8±307.5 |
Hepar2-5000 | -163 962.1±302.7* | -165 322.9±321.9* | -163 795.9±315.1 | -163 678.8±318.5 |
Win95pts-5000 | -48 889.7±645.8 | -50 365.0±398.2* | -51 549.3±530.5* | -48 971.1±331.9 |
Pathfinder-5000 | -168 888.9±2 839.8* | -159 475.9±848.9* | -162 705.3±1 161.5* | -148 546.8±513.6 |
Andes-5000 | NA | -482 606.6±775.7* | -469 372.9±369.3 | -474 902.6±485.4 |
Asia-10000 | -22 457.8±116.1 | -22 430.3±120.4 | -22 449.9±119.5 | -22 430.3±120.4 |
Child-10000 | -123 142.8±299.6 | -125 228.6±284.1* | -123 108.3±301.2 | -122 990.6±292.9 |
Insurance-10000 | -136 046.0±442.0* | -136 976.4±362.1* | -134 186.2±289.6* | -133 631.7±295.7 |
Alarm-10000 | -106 793.6±757.9 | -108 475.1±428.4* | -107 560.1±409.4* | -106 491.0±423.2 |
Hailfinder-10000 | -507 216.1±660.0* | -510 948.4±732.4* | -501 274.1±399.3* | -499 356.0±392.1 |
Hepar2-10000 | -327 266.9±517.5* | -330 406.6±571.4* | -326 994.3±505.6 | -326 818.2±473.4 |
Win95pts-10000 | -96 280.9±920.9 | -99 748.8±782.3* | -101 524.5±971.4* | -96 761.8±553.0 |
Pathfinder-10000 | -321 440.4±5 027.1* | -309 747.4±893.6* | -303 423.9±2 762.4* | 280 451.0±532.1 |
Andes-10000 | NA | -961 355.0±1 600.0* | -933 685.8±940.2 | -951 983.0±2 684.0 |
W/D/L | 14/10/0 | 24/3/0 | 17/8/2 | - |
表6
7种算法的TPR对比"
数据集 | PC-Stable | GFCI | MMHC | SaiyanH | FGES | MAHC | GB-DF |
Asia-1000 | 0.244±0.118 | 0.775±0.112 | 0.569±0.076 | 0.681±0.131 | 0.713±0.071 | 0.681±0.064 | 0.769±0.102 |
Child-1000 | 0.340±0.088 | 0.564±0.066 | 0.452±0.026 | 0.754±0.049 | 0.672±0.036 | 0.668±0.035 | 0.782±0.053 |
Insurance-1000 | 0.223±0.036 | 0.375±0.039 | 0.263±0.029 | 0.410±0.059 | 0.387±0.032 | 0.390±0.025 | 0.511±0.048 |
Alarm-1000 | 0.291±0.052 | 0.603±0.039 | 0.448±0.034 | 0.674±0.073 | 0.651±0.027 | 0.585±0.037 | 0.748±0.054 |
Hailfinder-1000 | 0.290±0.034 | 0.486±0.047 | 0.402±0.016 | 0.357±0.041 | 0.367±0.033 | 0.465±0.028 | 0.565±0.037 |
Hepar2-1000 | 0.107±0.024 | 0.242±0.023 | 0.249±0.016 | 0.279±0.037 | 0.209±0.024 | 0.331±0.023 | 0.351±0.036 |
Win95pts-1000 | 0.193±0.038 | 0.456±0.055 | 0.355±0.023 | 0.466±0.038 | 0.436±0.036 | 0.378±0.021 | 0.452±0.040 |
Pathfinder-1000 | 0.008±0.004 | 0.160±0.016 | 0.079±0.006 | 0.142±0.020 | 0.148±0.011 | 0.135±0.009 | 0.176±0.011 |
Andes-1000 | 0.321±0.044 | 0.548±0.080 | 0.580±0.010 | NA | 0.571±0.014 | 0.654±0.014 | 0.616±0.017 |
Asia-5000 | 0.381±0.028 | 0.800±0.085 | 0.631±0.049 | 0.731±0.093 | 0.750±0.000 | 0.662±0.059 | 0.812±0.064 |
Child-5000 | 0.642±0.088 | 0.648±0.046 | 0.550±0.018 | 0.852±0.039 | 0.680±0.000 | 0.822±0.046 | 0.922±0.033 |
Insurance-5000 | 0.383±0.026 | 0.408±0.072 | 0.354±0.019 | 0.491±0.043 | 0.408±0.033 | 0.530±0.049 | 0.679±0.090 |
Alarm-5000 | 0.524±0.052 | 0.755±0.021 | 0.599±0.038 | 0.828±0.059 | 0.741±0.031 | 0.627±0.029 | 0.833±0.061 |
Hailfinder-5000 | 0.314±0.063 | 0.491±0.031 | 0.480±0.007 | 0.466±0.024 | 0.505±0.045 | 0.620±0.020 | 0.695±0.040 |
Hepar2-5000 | 0.192±0.021 | 0.299±0.042 | 0.360±0.016 | 0.439±0.033 | 0.289±0.015 | 0.514±0.018 | 0.515±0.024 |
Win95pts-5000 | 0.388±0.056 | 0.489±0.092 | 0.484±0.025 | 0.564±0.024 | 0.503±0.024 | 0.496±0.025 | 0.456±0.039 |
Pathfinder-5000 | 0.008±0.005 | 0.138±0.019 | 0.076±0.004 | 0.169±0.011 | 0.137±0.012 | 0.178±0.007 | 0.230±0.010 |
Andes-5000 | 0.412±0.074 | 0.550±0.144 | 0.749±0.009 | NA | 0.629±0.014 | 0.824±0.012 | 0.621±0.018 |
Asia-10000 | 0.350±0.087 | 0.756±0.137 | 0.662±0.071 | 0.762±0.056 | 0.738±0.056 | 0.644±0.046 | 0.769±0.046 |
Child-10000 | 0.700±0.063 | 0.658±0.030 | 0.528±0.016 | 0.872±0.038 | 0.680±0.000 | 0.816±0.046 | 0.922±0.035 |
Insurance-10000 | 0.476±0.039 | 0.355±0.091 | 0.361±0.029 | 0.520±0.040 | 0.399±0.025 | 0.575±0.012 | 0.747±0.019 |
Alarm-10000 | 0.608±0.114 | 0.761±0.014 | 0.630±0.041 | 0.855±0.049 | 0.782±0.005 | 0.677±0.008 | 0.798±0.070 |
Hailfinder-10000 | 0.369±0.053 | 0.397±0.108 | 0.498±0.010 | 0.511±0.018 | 0.528±0.046 | 0.702±0.020 | 0.691±0.056 |
Hepar2-10000 | 0.204±0.024 | 0.317±0.022 | 0.406±0.016 | 0.507±0.028 | 0.298±0.015 | 0.578±0.014 | 0.596±0.018 |
Win95pts-10000 | 0.461±0.076 | 0.514±0.117 | 0.558±0.028 | 0.600±0.032 | 0.530±0.034 | 0.550±0.032 | 0.476±0.042 |
Pathfinder-10000 | 0.010±0.008 | 0.127±0.012 | 0.083±0.006 | 0.191±0.013 | 0.122±0.009 | 0.249±0.007 | 0.291±0.012 |
Andes-10000 | 0.393±0.026 | 0.595±0.129 | 0.797±0.009 | NA | 0.641±0.014 | 0.866±0.010 | 0.593±0.021 |
表7
7种算法的F1分数对比"
数据集 | PC-Stable | GFCI | MMHC | SaiyanH | FGES | MAHC | GB-DF |
Asia-1000 | 0.359±0.066 | 0.814±0.119 | 0.717±0.063 | 0.687±0.125 | 0.749±0.081 | 0.715±0.067 | 0.805±0.108 |
Child-1000 | 0.468±0.083 | 0.607±0.065 | 0.541±0.030 | 0.800±0.046 | 0.722±0.032 | 0.733±0.030 | 0.829±0.049 |
Insurance-1000 | 0.328±0.049 | 0.480±0.045 | 0.378±0.038 | 0.499±0.072 | 0.483±0.036 | 0.498±0.034 | 0.617±0.060 |
Alarm-1000 | 0.388±0.059 | 0.637±0.040 | 0.562±0.038 | 0.707±0.074 | 0.680±0.030 | 0.633±0.040 | 0.773±0.056 |
Hailfinder-1000 | 0.399±0.045 | 0.525±0.054 | 0.557±0.021 | 0.386±0.044 | 0.396±0.036 | 0.528±0.031 | 0.606±0.040 |
Hepar2-1000 | 0.165±0.036 | 0.338±0.030 | 0.381±0.023 | 0.356±0.046 | 0.291±0.032 | 0.460±0.029 | 0.465±0.045 |
Win95pts-1000 | 0.269±0.051 | 0.526±0.059 | 0.496±0.027 | 0.519±0.043 | 0.489±0.039 | 0.450±0.023 | 0.461±0.040 |
Pathfinder-1000 | 0.016±0.007 | 0.206±0.021 | 0.142±0.010 | 0.182±0.025 | 0.191±0.014 | 0.174±0.012 | 0.211±0.012 |
Andes-1000 | 0.390±0.054 | 0.593±0.089 | 0.711±0.013 | NA | 0.610±0.016 | 0.730±0.013 | 0.616±0.018 |
Asia-5000 | 0.462±0.028 | 0.845±0.093 | 0.770±0.045 | 0.736±0.091 | 0.792±0.018 | 0.700±0.064 | 0.858±0.068 |
Child-5000 | 0.713±0.099 | 0.654±0.048 | 0.638±0.015 | 0.874±0.034 | 0.686±0.008 | 0.840±0.046 | 0.921±0.034 |
Insurance-5000 | 0.511±0.031 | 0.491±0.087 | 0.470±0.021 | 0.584±0.048 | 0.482±0.041 | 0.618±0.053 | 0.748±0.095 |
Alarm-5000 | 0.610±0.051 | 0.782±0.024 | 0.687±0.043 | 0.840±0.064 | 0.759±0.034 | 0.643±0.035 | 0.847±0.069 |
Hailfinder-5000 | 0.414±0.083 | 0.519±0.032 | 0.646±0.009 | 0.496±0.026 | 0.515±0.046 | 0.678±0.020 | 0.710±0.047 |
Hepar2-5000 | 0.273±0.028 | 0.390±0.054 | 0.502±0.021 | 0.545±0.038 | 0.374±0.020 | 0.642±0.019 | 0.616±0.027 |
Win95pts-5000 | 0.489±0.069 | 0.549±0.103 | 0.622±0.025 | 0.622±0.024 | 0.545±0.024 | 0.555±0.028 | 0.427±0.040 |
Pathfinder-5000 | 0.015±0.010 | 0.164±0.023 | 0.138±0.006 | 0.214±0.014 | 0.162±0.014 | 0.208±0.009 | 0.256±0.011 |
Andes-5000 | 0.457±0.079 | 0.601±0.158 | 0.842±0.007 | NA | 0.672±0.017 | 0.880±0.010 | 0.613±0.020 |
Asia-10000 | 0.435±0.041 | 0.782±0.142 | 0.792±0.055 | 0.767±0.052 | 0.764±0.073 | 0.658±0.041 | 0.794±0.037 |
Child-10000 | 0.778±0.069 | 0.662±0.028 | 0.622±0.015 | 0.890±0.029 | 0.684±0.009 | 0.819±0.045 | 0.922±0.035 |
Insurance-10000 | 0.592±0.048 | 0.415±0.107 | 0.477±0.030 | 0.608±0.047 | 0.460±0.031 | 0.631±0.012 | 0.808±0.020 |
Alarm-10000 | 0.674±0.126 | 0.783±0.016 | 0.720±0.042 | 0.859±0.054 | 0.788±0.007 | 0.677±0.008 | 0.802±0.079 |
Hailfinder-10000 | 0.482±0.072 | 0.408±0.112 | 0.663±0.012 | 0.532±0.020 | 0.520±0.044 | 0.751±0.020 | 0.684±0.068 |
Hepar2-10000 | 0.281±0.032 | 0.404±0.027 | 0.550±0.018 | 0.620±0.030 | 0.376±0.018 | 0.695±0.016 | 0.688±0.019 |
Win95pts-10000 | 0.557±0.089 | 0.574±0.132 | 0.688±0.029 | 0.657±0.034 | 0.565±0.037 | 0.591±0.035 | 0.428±0.039 |
Pathfinder-10000 | 0.024±0.011 | 0.144±0.013 | 0.150±0.010 | 0.238±0.016 | 0.137±0.009 | 0.284±0.008 | 0.323±0.013 |
Andes-10000 | 0.427±0.029 | 0.646±0.140 | 0.880±0.007 | NA | 0.682±0.015 | 0.914±0.008 | 0.589±0.020 |
1 | KOLLER D , FRIEDMAN N . Probabilistic graphical models-principles and techniques[M]. London: MIT Press, 2009. |
2 |
SAHU A R , PALEI S K . Fault analysis of dragline subsystem using Bayesian network model[J]. Reliability Engineering and System Safety, 2022, 225, 108579.
doi: 10.1016/j.ress.2022.108579 |
3 |
LIU B Y , BI X W , GU L J , et al. Application of a Bayesian network based on multi-source information fusion in the fault diagnosis of a radar receiver[J]. Sensors, 2022, 22 (17): 6396.
doi: 10.3390/s22176396 |
4 |
YE T Y , LIU L L , PANG H W , et al. Bayesian networks based approach to enhance GO methodology for reliability modeling of multi-state consecutive-k-out-of-n: F system[J]. Reliability Engineering and System Safety, 2023, 229, 108828.
doi: 10.1016/j.ress.2022.108828 |
5 |
WANG N , WU M , YUEN K F . Assessment of port resilience using Bayesian network: a study of strategies to enhance readiness and response capacities[J]. Reliability Engineering and System Safety, 2023, 237, 109394.
doi: 10.1016/j.ress.2023.109394 |
6 |
NISTAL N B . Tutorial of the probabilistic methods Bayesian networks and influence diagrams applied to medicine[J]. Journal of Evidence-Based Medicine, 2018, 11 (2): 112- 124.
doi: 10.1111/jebm.12298 |
7 |
AYADI H , KHEMAKHEM M T , HUANG J X . Term depen-dency extraction using rule-based Bayesian network for medical image retrieval[J]. Artificial Intelligence in Medicine, 2023, 140, 102551.
doi: 10.1016/j.artmed.2023.102551 |
8 |
刘延钊, 黄志球, 沈国华, 等. 基于决策树和BN的自动驾驶车辆行为决策方法[J]. 系统工程与电子技术, 2022, 44 (10): 3143- 3154.
doi: 10.12305/j.issn.1001-506X.2022.10.18 |
LIU Y Z , HUANG Z Q , SHEN G H , et al. Behavioral decision-making methods of autonomous vehicles based on decision tree and BN[J]. Systems Engineering and Electronics, 2022, 44 (10): 3143- 3154.
doi: 10.12305/j.issn.1001-506X.2022.10.18 |
|
9 |
XIA H , AKAY Y M , AKAY M . Investigating miRNA-mRNA interactions and gene regulatory networks from VTA dopaminergic neurons following perinatal nicotine and alcohol exposure using Bayesian network analysis[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26 (7): 3550- 3555.
doi: 10.1109/JBHI.2022.3158620 |
10 |
茹鑫鑫, 高晓光, 王阳阳. 基于模糊约束的贝叶斯网络参数学习[J]. 系统工程与电子技术, 2023, 45 (2): 444- 452.
doi: 10.12305/j.issn.1001-506X.2023.02.15 |
RU X X , GAO X G , WANG Y Y . Bayesian network parameter learning based on fuzzy constraints[J]. Systems Engineering and Electronics, 2023, 45 (2): 444- 452.
doi: 10.12305/j.issn.1001-506X.2023.02.15 |
|
11 | 李硕豪, 张军. 贝叶斯网络结构学习综述[J]. 计算机应用研究, 2015, 32 (3): 641- 646. |
LI S H , ZHANG J . Review of Bayesian networks structure learning[J]. Application Research of Computers, 2015, 32 (3): 641- 646. | |
12 |
KITSON N K , CONSTANTINOU A C , GUO Z G , et al. A survey of Bayesian network structure learning[J]. Artificial Intelligence Review, 2023, 56 (8): 8721- 8814.
doi: 10.1007/s10462-022-10351-w |
13 | COLOMBO D , MAATHUIS M H . Order-independent constraint-based causal structure learning[J]. The Journal of Machine Learning Research, 2014, 15 (1): 3741- 3782. |
14 | OGARRIO J M, SPIRTES P, RAMSEY J. A hybrid causal search algorithm for latent variable models[C]//Proc. of the 8th International Conference on Probabilistic Graphical Models, 2016. |
15 |
RAMSEY J D , GLYMOUR M , SANCHEZ R R , et al. A million variables and more: the fast greedy equivalence search algorithm for learning high-dimensional graphical causal models, with an application to functional magnetic resonance images[J]. International Journal of Data Science and Analytics, 2017, 3 (2): 121- 129.
doi: 10.1007/s41060-016-0032-z |
16 |
CONSTANTINOU A C , LIU Y , KITSON N K , et al. Effective and efficient structure learning with pruning and model averaging strategies[J]. International Journal of Approximate Reasoning, 2022, 151, 292- 321.
doi: 10.1016/j.ijar.2022.09.016 |
17 |
TSAMARDINOS I , BROWN L E , ALIFERIS C F . The max-min hill-climbing Bayesian network structure learning algorithm[J]. Machine Learning, 2006, 65 (1): 31- 78.
doi: 10.1007/s10994-006-6889-7 |
18 | CONSTANTINOU A C . Learning Bayesian networks with the Saiyan algorithm[J]. ACM Transactions on Knowledge Disco-very from Data, 2020, 14 (4): 1- 21. |
19 | 高晓光, 王晨凤, 邸若海. 一种学习稀疏BN最优结构的改进K均值分块学习算法[J]. 自动化学报, 2020, 46 (5): 923- 933. |
GAO X G , WANG C F , DI R H . A block learning algorithm with improved K-means algorithm for learning sparse BN optimal structure[J]. Acta Automatica Sinica, 2020, 46 (5): 923- 933. | |
20 | 王守会, 覃飙. 基于集成学习和反馈策略的贝叶斯网络结构学习[J]. 计算机学报, 2021, 44 (6): 1051- 1063. |
WANG S H , QIN B . Bayesian network structure learning by ensemble learning and feedback strategy[J]. Chinese Journal of Computers, 2021, 44 (6): 1051- 1063. | |
21 | TEYSSIER M, KOLLER D. Ordering-based search: a simple and effective algorithm for learning Bayesian networks[C]//Proc. of the 21st Conference on Uncertainty in Artificial Intelligence, 2005: 584-590. |
22 | SCANAGATTA M , CORANI G , ZAFFALON M , et al. Learning Bayesian networks with thousands of variables[J]. Advances in Neural Information Processing Systems, 2015, 1864- 1872. |
23 | LEE C, BEEK P V. Metaheuristics for score-and-search Baye-sian network structure learning[C]//Proc. of the 30th Canadian Conference on Artificial Intelligence, 2017: 129-141. |
24 | SCANAGATTA M, CORANI G, ZAFFALON M. Improved local search in Bayesian networks structure learning[C]//Proc. of the 3rd International Workshop on Advanced Methodologies for Bayesian Networks, 2017: 45-56. |
25 | 王海羽, 刘浩然, 张力悦, 等. 基于节点块序列约束的局部贝叶斯网络结构搜索算法[J]. 自动化学报, 2020, 46 (6): 1210- 1219. |
WANG H Y , LIU H R , ZHANG L Y , et al. Local Bayesian network structure searching using constraint of node chunk sequence[J]. Acta Automatica Sinica, 2020, 46 (6): 1210- 1219. | |
26 | HOOS H H , STUTZLE T . Stochastic local search: foundations & applications[M]. California: Morgan Kaufmann, 2004. |
27 | GRUTTEMEIER N, KOMUSIEWICZ C, MORAWIETZ N. Efficient Bayesian network structure learning via parameterized local search on topological orderings[C]//Proc. of the 35th AAAI Conference on Artificial Intelligence, 2021: 12328-12335. |
28 |
YE Q , AMINI A A , ZHOU Q . Optimizing regularized cho-lesky score for order-based learning of Bayesian networks[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2021, 43 (10): 3555- 3572.
doi: 10.1109/TPAMI.2020.2990820 |
29 |
LYU Y L , MIAO J Z , LIANG J Y , et al. BIC-based node order learning for improving Bayesian network structure learning[J]. Frontiers of Computer Science, 2021, 15 (6): 156337.
doi: 10.1007/s11704-020-0268-6 |
30 |
XU R H , LIU S H , ZHANG Q W , et al. PEWOBS: an efficient Bayesian network learning approach based on permutation and extensible ordering-based search[J]. Future Generation Computer Systems, 2022, 128, 505- 520.
doi: 10.1016/j.future.2021.10.026 |
31 |
YOO C , GONZALEZ E , GONG Z H , et al. A better mechanistic understanding of big data through an order search using causal Bayesian networks[J]. Big Data and Cognitive Computing, 2022, 6 (2): 56.
doi: 10.3390/bdcc6020056 |
32 |
WANG Z D , GAO X G , TAN X Y , et al. Determining the direction of the local search in topological ordering space for Bayesian network structure learning[J]. Knowledge Based Systems, 2021, 234, 107566.
doi: 10.1016/j.knosys.2021.107566 |
33 | HECKERMAN D , GEIGER D , CHICKERING D . Learning Bayesian networks: the combination of knowledge and statistical data[J]. Machine Learning, 1995, 20 (3): 197- 243. |
34 |
AKAIKE H . A new look at the statistical model identification[J]. IEEE Trans.on Automatic Control, 1974, 19 (6): 716- 723.
doi: 10.1109/TAC.1974.1100705 |
35 |
LAM W , BACCHUS F . Learning Bayesian belief networks: an approach based on the MDL principle[J]. Computational Intelligence, 1994, 10 (3): 269- 293.
doi: 10.1111/j.1467-8640.1994.tb00166.x |
36 | SCHWARZ G E . Estimating the dimension of a model[J]. The Annals of Statistics, 1978, 6 (2): 461- 464. |
37 |
YUAN C H , MALONE B M . Learning optimal Bayesian networks: a shortest path perspective[J]. Journal of Artificial Intelligence Research, 2013, 48, 23- 65.
doi: 10.1613/jair.4039 |
38 | VERMA T, PEARL J. Equivalence and synthesis of causal models[C]//Proc. of the 6th Annual Conference on Uncertainty in Artificial Intelligence, 1990: 255-270. |
39 | CUSSENS J. Bayesian network learning with cutting planes[C]//Proc. of the 27th Conference on Uncertainty in Artificial Intelligence, 2011: 153-160. |
[1] | 王阳阳, 高晓光, 茹鑫鑫. 高维数据局部贝叶斯网络结构学习[J]. 系统工程与电子技术, 2024, 46(8): 2676-2685. |
[2] | 蔡一鸣, 马力, 陆恒杨, 方伟. 基于全流程并行遗传算法的贝叶斯网络结构学习[J]. 系统工程与电子技术, 2024, 46(5): 1703-1711. |
[3] | 王紫东, 高晓光, 刘晓寒. 基于Stacking策略的集成BN网络目标威胁评估[J]. 系统工程与电子技术, 2024, 46(2): 586-598. |
[4] | 茹鑫鑫, 高晓光, 王阳阳. 基于模糊约束的贝叶斯网络参数学习[J]. 系统工程与电子技术, 2023, 45(2): 444-452. |
[5] | 曾婷, 高帅, 孙富强, 赖小明, 李云, 李孝鹏. 人机环耦合效应下卫星天线装配概率风险分析[J]. 系统工程与电子技术, 2023, 45(2): 606-613. |
[6] | 李懿凡, 钱华明, 黄洪钟, 张庭瑜, 黄土地. 基于广义连续时间贝叶斯网络的指挥控制网络系统可靠性分析[J]. 系统工程与电子技术, 2022, 44(12): 3880-3886. |
[7] | 王鹏, 孙紫荆, 张帆, 肖国松. 考虑概率型共因失效的多阶段任务系统可靠性分析模型[J]. 系统工程与电子技术, 2022, 44(12): 3887-3898. |
[8] | 乔殿峰, 梁彦, 马超雄, 杨心语, 汪冕, 李建国. 多域作战下的群目标意图识别与预测[J]. 系统工程与电子技术, 2022, 44(11): 3403-3412. |
[9] | 刘延钊, 黄志球, 沈国华, 王金永, 徐恒. 基于决策树和BN的自动驾驶车辆行为决策方法[J]. 系统工程与电子技术, 2022, 44(10): 3143-3154. |
[10] | 赵禄达, 王斌. 基于RS-DBN的电子对抗目标清单生成方法[J]. 系统工程与电子技术, 2021, 43(9): 2373-2382. |
[11] | 陈洪转, 赵爱佳, 李腾蛟, 蔡匆聪, 程硕, 徐春丽. 基于故障树的复杂装备模糊贝叶斯网络推理故障诊断[J]. 系统工程与电子技术, 2021, 43(5): 1248-1261. |
[12] | 孙雪, 黄志球, 沈国华, 王金永, 徐恒. 基于本体和BN的无人车行为决策方法[J]. 系统工程与电子技术, 2021, 43(2): 452-465. |
[13] | 赵长啸, 李浩, 董磊, 王鹏. 基于STPA-Bayes模型的机载平视显示系统安全性分析与评价[J]. 系统工程与电子技术, 2020, 42(5): 1083-1092. |
[14] | 曾强, 黄政, 魏曙寰. 融合专家先验知识和单调性约束的贝叶斯网络参数学习方法[J]. 系统工程与电子技术, 2020, 42(3): 646-652. |
[15] | 孟光磊, 周铭哲, 朴海音, 张慧敏. 基于协同战术识别的双机编队威胁评估方法[J]. 系统工程与电子技术, 2020, 42(10): 2285-2293. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||