系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (3): 646-652.doi: 10.3969/j.issn.1001-506X.2020.03.019
收稿日期:
2019-07-10
出版日期:
2020-03-01
发布日期:
2020-02-28
作者简介:
曾强 (1995-),男,硕士研究生,主要研究方向为可靠性维修性保障性工程。E-mail:基金资助:
Qiang ZENG(), Zheng HUANG(
), Shuhuan WEI(
)
Received:
2019-07-10
Online:
2020-03-01
Published:
2020-02-28
Supported by:
摘要:
针对小样本集条件下的贝叶斯网络参数学习问题,提出一种融合专家先验知识和单调性约束的贝叶斯网络参数学习方法。该方法通过将专家先验知识以正态分布形式融入单调性约束的贝叶斯网络参数学习过程,进一步提高了小样本集条件下贝叶斯网络参数学习的精度和稳定性。在小样本集条件下进行仿真实验,结果表明,与其他3种主要方法相比,所提方法平均(Kullback-Leibler, KL)散度大幅降低,运行时间高于其余3种方法。综合考虑学习精度和运行时间,所提方法优于其他3种方法。将所提方法应用于燃气轮机健康状态评估,评估结果与实际状态一致,验证了方法的有效性。
中图分类号:
曾强, 黄政, 魏曙寰. 融合专家先验知识和单调性约束的贝叶斯网络参数学习方法[J]. 系统工程与电子技术, 2020, 42(3): 646-652.
Qiang ZENG, Zheng HUANG, Shuhuan WEI. Bayesian network parameter learning method based on expert priori knowledge and monotonic constraints[J]. Systems Engineering and Electronics, 2020, 42(3): 646-652.
表1
其余节点的网络真实参数"
节点 | 参数值 |
S | PS|C(0|0)=0.2 |
PS|C(1|0)=0.8 | |
PS|C(0|1)=0.6 | |
PS|C(1|1)=0.4 | |
R | PR|C(0|0)=0.9 |
PR|C(1|0)=0.1 | |
PR|C(0|1)=0.2 | |
PR|C(1|1)=0.8 | |
W | PW|S, R(0|0, 0)=0.9 |
PW|S, R(1|0, 0)=0.1 | |
PW|S, R(0|0, 1)=0.2 | |
PW|S, R(1|0, 1)=0.8 | |
PW|S, R(0|1, 0)=0.1 | |
PW|S, R(1|1, 0)=0.9 | |
PW|S, R(0|1, 1)=0.01 | |
PW|S, R(1|1, 1)=0.99 |
表4
W节点参数学习结果"
W节点状态 | 5样本集 | 15样本集 | |||||||
MLE | 无先验MAP | 均匀分布方法 | 本文方法 | MLE | 无先验MAP | 均匀分布方法 | 本文方法 | ||
PW|S, R(0|0, 0) | 1.000 0 | 0.666 7 | 0.850 4 | 0.902 6 | 1.000 0 | 0.800 0 | 0.851 9 | 0.907 3 | |
PW|S, R(1|0, 0) | 0.000 0 | 0.333 3 | 0.149 6 | 0.097 4 | 0.000 0 | 0.200 0 | 0.148 1 | 0.092 7 | |
PW|S, R(0|0, 1) | 0.000 0 | 0.333 3 | 0.241 5 | 0.195 3 | 0.200 0 | 0.285 7 | 0.242 5 | 0.200 0 | |
PW|S, R(1|0, 1) | 1.000 0 | 0.666 7 | 0.758 5 | 0.804 7 | 0.800 0 | 0.714 3 | 0.757 5 | 0.800 0 | |
PW|S, R(0|1, 0) | 0.000 0 | 0.200 0 | 0.173 6 | 0.092 7 | 0.000 0 | 0.166 7 | 0.167 9 | 0.090 5 | |
PW|S, R(1|1, 0) | 1.000 0 | 0.800 0 | 0.826 4 | 0.907 3 | 1.000 0 | 0.833 3 | 0.832 1 | 0.909 5 | |
PW|S, R(0|1, 1) | 0.000 0 | 0.333 3 | 0.020 0 | 0.010 0 | 0.000 0 | 0.200 0 | 0.019 5 | 0.009 8 | |
PW|S, R(1|1, 1) | 1.000 0 | 0.666 7 | 0.980 0 | 0.990 0 | 1.000 0 | 0.800 0 | 0.980 5 | 0.990 2 | |
W节点状态 | 25样本集 | 35样本集 | |||||||
MLE | 无先验MAP | 均匀分布方法 | 本文方法 | MLE | 无先验MAP | 均匀分布方法 | 本文方法 | ||
PW|S, R(0|0, 0) | 0.750 0 | 0.666 7 | 0.847 7 | 0.897 0 | 0.888 9 | 0.818 2 | 0.851 4 | 0.899 5 | |
PW|S, R(1|0, 0) | 0.250 0 | 0.333 3 | 0.152 3 | 0.103 0 | 0.111 1 | 0.181 8 | 0.148 6 | 0.100 5 | |
PW|S, R(0|1, 0) | 0.125 0 | 0.200 0 | 0.222 6 | 0.193 9 | 0.100 0 | 0.166 7 | 0.211 0 | 0.190 0 | |
PW|S, R(1|1, 0) | 0.875 0 | 0.800 0 | 0.777 4 | 0.806 1 | 0.900 0 | 0.833 3 | 0.789 0 | 0.810 0 | |
PW|S, R(0|0, 1) | 0.250 0 | 0.300 0 | 0.154 2 | 0.105 9 | 0.300 0 | 0.300 0 | 0.206 5 | 0.105 9 | |
PW|S, R(1|0, 1) | 0.750 0 | 0.700 0 | 0.845 8 | 0.894 1 | 0.700 0 | 0.700 0 | 0.750 0 | 0.894 1 | |
PW|S, R(0|1, 1) | 0.000 0 | 0.166 7 | 0.019 3 | 0.009 7 | 0.000 0 | 0.125 0 | 0.019 0 | 0.009 5 | |
PW|S, R(1|1, 1) | 1.000 0 | 0.833 3 | 0.980 7 | 0.990 3 | 1.000 0 | 0.875 0 | 0.981 0 | 0.990 5 |
表8
单调性约束条件"
编号 | 约束 |
1 | PT|T2, T4(0|0, 0)>PT|T2, T4(1|0, 0) |
2 | PT|T2, T4(1|0, 1)>PT|T2, T4(0|0, 1) |
3 | PT|T2, T4(1|1, 0)>PT|T2, T4(0|1, 0) |
4 | PT|T2, T4(1|1, 1)>PT|T2, T4(0|1, 1) |
5 | PN|N1, N2(0|0, 0)>PN|N1, N2(1|0, 0) |
6 | PN|N1, N2(0|0, 1) > PN|N1, N2(1|0, 1) |
7 | PN|N1, N2(0|1, 0)>PN|N1, N2(1|1, 0) |
8 | PN|N1, N2(1|1, 1)>PN|N1, N2(0|1, 1) |
9 | PH|T, N(0|0, 0)>PH|T, N(1|0, 0) |
10 | PH|T, N(1|0, 1)>PH|T, N(0|0, 1) |
11 | PH|T, N(1|1, 0)>PH|T, N(0|1, 0) |
12 | PH|T, N(1|1, 1)>PH|T, N(0|1, 1) |
表9
燃气轮机专家先验知识"
编号 | 约束 |
1 | PT|T2, T4(1|0, 0)≈0.2 |
2 | PT|T2, T4(0|0, 1)≈0.3 |
3 | PT|T2, T4(0|1, 0)≈0.4 |
4 | PT|T2, T4(0|1, 1)≈0.1 |
5 | PN|NN2, N2(1|0, 0)≈0.1 |
6 | PN|NN2, N2(1|0, 1)≈0.4 |
7 | PN|NN2, N2(1|1, 0)≈0.4 |
8 | PN|NN2, N2(0|1, 1)≈0.2 |
9 | PH|T, N(1|0, 0)≈0.1 |
10 | PH|T, N(0|0, 1)≈0.4 |
11 | PH|T, N(0|1, 0)≈0.3 |
12 | PH|T, N(0|1, 1)≈0.1 |
1 | YAO T , CHOI A , DARWICHE A . Learning Bayesian network parameters under equivalence constraints[J]. Artificial Intelligence, 2017, 244 (C): 239- 257. |
2 | AMIN M , KHAN F , IMTIZA S . Fault detection and pathway analysis using a dynamic Bayesian network[J]. Chemical Engineering Science, 2019, 195 (23): 777- 790. |
3 | CAI B , LIU H , XIE M . A real-time fault diagnosis methodology of complex systems using object-oriented Bayesian networks[J]. Mechanical Systems & Signal Processing, 2016, 80 (1): 31- 44. |
4 | ARIAS J , JESUS M G , JOSE A G , et al. Medical image modality classification using discrete Bayesian networks[J]. Computer Vision & Image Understanding, 2016, 151 (C): 61- 71. |
5 |
马洁. 一种基于线性代数的图像处理算法研究[J]. 计算机科学, 2012, 39 (11): 286- 288.
doi: 10.3969/j.issn.1002-137X.2012.11.068 |
MA J . Research on image processing algorithm based on linear algebra[J]. Computer Science, 2012, 39 (11): 286- 288.
doi: 10.3969/j.issn.1002-137X.2012.11.068 |
|
6 | 李思瑶, 周海芳, 方民权. 基于GPU的图像监督分类算法的研究[J]. 计算机科学, 2018, 45 (S1): 143- 145, 170. |
LI S Y , ZHOU H F , FANG M Q . Research on image supervised classification algorithm based on GPU[J]. Computer Science, 2018, 45 (S1): 143- 145, 170. | |
7 | 孙海文, 谢晓方, 孙涛, 等. 小样本数据缺失状态下DBN舰艇编队防空目标威胁评估方法[J]. 系统工程与电子技术, 2019, 41 (6): 1300- 1308. |
SUN H W , XIE X F , SUN T , et al. Threat assessment method of warships formation air defense based on DBN under the condition of small sample data missing[J]. Systems Engineering and Electronics, 2019, 41 (6): 1300- 1308. | |
8 | DSHIRE S , TSHIR F , JIAO Y , et al. Bayesian network inference for probabilistic strength estimation of aging pipeline systems[J]. International Journal of Pressure Vessels and Piping, 2018, 162 (3): 30- 39. |
9 | CHATURVEDI I , RAGUSA E , GASTSLDO P , et al. Bayesian network based extreme learning machine for subjectivity detection[J]. Journal of the Franklin Institute, 2017, 355 (4): 1780- 1797. |
10 | ABAEI M M , ABBASSI R , GARANIYA V , et al. Reliability assessment of marine floating structures using Bayesian network[J]. Applied Ocean Research, 2018, 76 (7): 51- 60. |
11 | GUO Z G , GUO X G , REN H , et al. Learning Bayesian network parameters from small data sets: a further constrained qualitatively maximum a posteriori method[J]. International Journal of Approximate Reasoning, 2017, 91 (12): 22- 35. |
12 | 任佳, 高晓光, 白勇. 信息不完备小样本条件下离散DBN参数学习[J]. 系统工程与电子技术, 2012, 34 (8): 1723- 1728. |
REN J , GAO X G , BAI Y . Discrete DBN parameter learning under small sample conditions[J]. System Engineering and Electronics, 2012, 34 (8): 1723- 1728. | |
13 | ZHOU Y , FENTON N , ZHU C . An empirical study of Bayesian network parameter learning with monotonic influence constraints[J]. Decision Support Systems, 2016, 87 (7): 69- 79. |
14 |
YALIN J , ZIZHEN L , HUI G , et al. An improved constraint-based Bayesian network learning method using Gaussian kernel probability density estimator[J]. Expert Systems with Applications, 2018, 113, 544- 554.
doi: 10.1016/j.eswa.2018.06.058 |
15 | DE C C P , SCANAGATTA M , CORANI G , et al. Entropy-based pruning for learning Bayesian networks using BIC[J]. Artificial Intelligence, 2018, 260 (7): 42- 50. |
16 | 高晓光, 邸若海, 郭志高. 基于单调性约束的离散贝叶斯网络参数学习[J]. 系统工程与电子技术, 2014, 36 (2): 272- 277. |
GAO X G , DI R H , GUO Z G . Parameter learning of discrete Bayesian networks based on monotonic constraints[J]. Systems Engineering and Electronics, 2014, 36 (2): 272- 277. | |
17 | RUI C, WEI W. Novel algorithm for Bayesian network parameter learning with informative prior constraints[C]//Proc.of the International Joint Conference on Neural Networks, 2010: 1-8. |
18 | 柴慧敏, 赵昀瑶, 方敏. 利用先验正态分布的贝叶斯网络参数学习[J]. 系统工程与电子技术, 2018, 40 (10): 219- 224. |
CHAI H M , ZHAO Y Y , FANG M . Bayesian network parameter learning using prior normal distribution[J]. Systems Engineering and Electronics, 2018, 40 (10): 219- 224. | |
19 | DE C, JI Q. Improving Bayesian network parameter learning using constraints[C]//Proc.of the 19th International Conference on Pattern Recognition, 2008: 1-4. |
20 | NICULESCU R S , MITCHELL T M . Bayesian network learning with parameter constraints[J]. Journal of Machine Learning Research, 2006, 7 (3): 1357- 1383. |
21 |
LIAO W , JI Q . Learning Bayesian network parameters under incomplete data with domain knowledge[J]. Pattern Recognition, 2009, 42 (11): 3046- 3056.
doi: 10.1016/j.patcog.2009.04.006 |
22 | 高晓光, 叶思懋, 邸若海, 等. 基于融合先验方法的贝叶斯网络结构学习[J]. 系统工程与电子技术, 2018, 40 (4): 790- 796. |
GAO X G , YE S M , DI R H , et al. Bayesian network structure learning based on fusion prior method[J]. Systems Engineering and Electronics, 2018, 40 (4): 790- 796. | |
23 | 吴红, 王维平, 杨峰. 融合先验信息的贝叶斯网络结构学习方法[J]. 系统工程与电子技术, 2012, 34 (12): 2585- 2591. |
WU H , WANG W P , YANG F . Bayesian network structure learning method based on prior information[J]. Systems Engineering and Electronics, 2012, 34 (12): 2585- 2591. | |
24 | 崔建国, 肖杰, 蒋丽英, 等. 基于组合赋权法和云重心评估法的燃气轮机健康状态评估[J]. 科学技术与工程, 2017, 17 (33): 268- 273. |
CUI J G , XIAO J , JIANG L Y , et al. Gas turbine health status assessment based on combination weighting method and cloud gravity center assessment method[J]. Science Technology and Engineering, 2017, 17 (33): 268- 273. |
[1] | 李懿凡, 钱华明, 黄洪钟, 张庭瑜, 黄土地. 基于广义连续时间贝叶斯网络的指挥控制网络系统可靠性分析[J]. 系统工程与电子技术, 2022, 44(12): 3880-3886. |
[2] | 王鹏, 孙紫荆, 张帆, 肖国松. 考虑概率型共因失效的多阶段任务系统可靠性分析模型[J]. 系统工程与电子技术, 2022, 44(12): 3887-3898. |
[3] | 乔殿峰, 梁彦, 马超雄, 杨心语, 汪冕, 李建国. 多域作战下的群目标意图识别与预测[J]. 系统工程与电子技术, 2022, 44(11): 3403-3412. |
[4] | 刘延钊, 黄志球, 沈国华, 王金永, 徐恒. 基于决策树和BN的自动驾驶车辆行为决策方法[J]. 系统工程与电子技术, 2022, 44(10): 3143-3154. |
[5] | 马前阔, 张小宽, 宗彬锋, 徐嘉华, 王阳, 郑舒予. 基于改进混合对数正态分布模型的隐身飞机动态RCS统计特性分析[J]. 系统工程与电子技术, 2022, 44(1): 34-39. |
[6] | 赵禄达, 王斌. 基于RS-DBN的电子对抗目标清单生成方法[J]. 系统工程与电子技术, 2021, 43(9): 2373-2382. |
[7] | 陈洪转, 赵爱佳, 李腾蛟, 蔡匆聪, 程硕, 徐春丽. 基于故障树的复杂装备模糊贝叶斯网络推理故障诊断[J]. 系统工程与电子技术, 2021, 43(5): 1248-1261. |
[8] | 孙雪, 黄志球, 沈国华, 王金永, 徐恒. 基于本体和BN的无人车行为决策方法[J]. 系统工程与电子技术, 2021, 43(2): 452-465. |
[9] | 赵长啸, 李浩, 董磊, 王鹏. 基于STPA-Bayes模型的机载平视显示系统安全性分析与评价[J]. 系统工程与电子技术, 2020, 42(5): 1083-1092. |
[10] | 王浩伟, 康锐. 基于不确定理论的退化数据分析方法[J]. 系统工程与电子技术, 2020, 42(12): 2924-2930. |
[11] | 孟光磊, 周铭哲, 朴海音, 张慧敏. 基于协同战术识别的双机编队威胁评估方法[J]. 系统工程与电子技术, 2020, 42(10): 2285-2293. |
[12] | 孙海文, 谢晓方, 孙涛, 张龙杰. 小样本数据缺失状态下DBN舰艇编队防空目标威胁评估方法[J]. 系统工程与电子技术, 2019, 41(6): 1300-1308. |
[13] | 吕学志, 胡晓峰, 吴琳, 贺筱媛. 基于改进竞争性假设分析的战役企图分析方法[J]. 系统工程与电子技术, 2019, 41(3): 555-563. |
[14] | 刘久富, 丁晓彬, 郑锐, 王彪, 刘海阳, 王志胜. 混沌量子粒子群的权重类条件贝叶斯网络分类器参数学习[J]. 系统工程与电子技术, 2019, 41(10): 2304-2309. |
[15] | 李明, 张韧, 洪梅, 白成祖. 基于信息流改进的贝叶斯网络结构学习算法[J]. 系统工程与电子技术, 2018, 40(6): 1385-1390. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||