系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (2): 452-465.doi: 10.12305/j.issn.1001-506X.2021.02.20

• 系统工程 • 上一篇    下一篇

基于本体和BN的无人车行为决策方法

孙雪1,2(), 黄志球1,2,3(), 沈国华1,2,3(), 王金永1,2(), 徐恒1,2()   

  1. 1. 南京航空航天大学计算机科学与技术学院, 江苏 南京 211106
    2. 南京航空航天大学 高安全系统的软件开发与验证技术工业和信息化部重点实验室, 江苏 南京 211106
    3. 软件新技术与产业化协同创新中心, 江苏 南京 210093
  • 收稿日期:2019-12-24 出版日期:2021-02-01 发布日期:2021-03-16
  • 作者简介:孙雪(1995-),女,硕士研究生,主要研究方向为BN、组件重要度、本体。E-mail:sunxue1217016581@163.com|黄志球(1965-),男,教授,博士研究生导师,博士,主要研究方向为软件工程、形式化方法、云计算。E-mail:zqhuang@nuaa.edu.cn|沈国华(1976-),男,副教授,硕士研究生导师,博士,主要研究方向为软件需求追踪、软件度量。E-mail:ghshen@nuaa.edu.cn|王金永(1983-),男,博士研究生,主要研究方向为同步系统的需求建模与安全性分析。E-mail:jinyongw@nuaa.edu.cn|徐恒(1994-),男,博士研究生,主要研究方向为无人系统的需求建模与可靠性分析。E-mail:xh971801361@163.com
  • 基金资助:
    国家自然科学基金(61772270);国家重点研发计划(2016YFB1000802)

Behavior decision method of autonomous vehicle based on ontology and BN

Xue SUN1,2(), Zhiqiu HUANG1,2,3(), Guohua SHEN1,2,3(), Jinyong WANG1,2(), Heng XU1,2()   

  1. 1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211016, China
    2. Key Laboratory of Safety-Critical Software Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
    3. Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 210093, China
  • Received:2019-12-24 Online:2021-02-01 Published:2021-03-16

摘要:

和高速交通环境比,城市交通环境具有更高的复杂性和不确定性,因此无人驾驶车辆行为决策系统要能给出驾驶场景下安全有效的驾驶动作。本文提出一种将本体语义表示与贝叶斯网络(Bayesian network, BN)概率推理相结合的行为决策模型。从驾驶场景中的多源异构信息和领域专家经验出发,建立本体并进行概率扩展,将其转换为BN,通过BN推理得到当前驾驶场景下的最佳驾驶动作。该方法既实现了驾驶场景领域知识的形式化描述和共享,又考虑到了驾驶场景中存在的不确定性。最后,通过Prescan/Simulink联合仿真实验验证了所提方法在无人驾驶车辆行为决策上的有效性。

关键词: 无人驾驶车辆, 行为决策, 本体, 贝叶斯网络, Prescan联合仿真

Abstract:

Compared with expressway traffic environment, urban traffic environment has higher complexity and uncertainty. Therefore, autonomous vehicles need behavior decision system to give safe and effective driving actions in driving scenarios. In this paper, a behavior decision model combined ontology semantic and probabilistic reasoning of Bayesian network (BN) is proposed. Based on the multi-source heterogeneous information and domain expert experience in autonomous driving scene, the ontology is establishd and carried out probability expansion to convert ontology to BN, which can obtain the best driving action in the current driving scene through BN. This method not only realizes the formal description and sharing of driving scene domain knowledge, but also takes into account the uncertainty in driving scene. Finally, the effectiveness of the proposed method in autonomous vehicle behavior decision is verified by Prescan/Simulink joint simulation experiment.

Key words: autonomous vehicle, behavior decision-making, ontology, Bayesian network(BN), Prescan joint simulation

中图分类号: