系统工程与电子技术 ›› 2026, Vol. 48 ›› Issue (1): 76-86.doi: 10.12305/j.issn.1001-506X.2026.01.08

• 传感器与信号处理 • 上一篇    下一篇

基于形状和骨架特征匹配的小样本三维点云目标识别方法

范睿嘉1(), 刘杰2, 于君明2, 冯晓峰2, 徐文静1, 尹良1,*()   

  1. 1. 北京邮电大学信息与通信工程学院,北京 100876
    2. 中国电子科技集团公司第二十七研究所,河南 郑州 450047
  • 收稿日期:2024-07-16 出版日期:2026-01-25 发布日期:2026-02-11
  • 通讯作者: 尹良 E-mail:Ruijia_Fan@bupt.edu.cn;YinL@bupt.edu.cn
  • 作者简介:范睿嘉(1999—),女,硕士研究生,主要研究方向为雷达信号处理、三维点云识别
    刘 杰(1984—),男,研究员,主要研究方向为雷达信号处理
    于君明(1980—),女,高级工程师,主要研究方向为雷达目标识别、雷达信号处理
    冯晓峰(1986—),男,高级工程师,主要研究方向为雷达目标识别、雷达信号处理
    徐文静(2000—),女,硕士研究生,主要研究方向为极化数据处理、雷达信号处理

Small sample 3D point cloud target recognition method based on shape and skeleton feature matching

Ruijia FAN1(), Jie LIU2, Junming YU2, Xiaofeng FENG2, Wenjing XU1, Liang YIN1,*()   

  1. 1. School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China
    2. The 27th Research Institute of China Electronics Technology GroupCorporation,Zhengzhou 450047,China
  • Received:2024-07-16 Online:2026-01-25 Published:2026-02-11
  • Contact: Liang YIN E-mail:Ruijia_Fan@bupt.edu.cn;YinL@bupt.edu.cn

摘要:

在非合作或遮蔽场景下,获取高质量目标三维点云具有困难性,小样本、低信噪比条件下的三维点云目标识别面临挑战。对此提出一种基于形状和骨架特征匹配的目标识别算法,利用语义规则滤波和二维映射,解决杂波干扰、目标点云模糊的问题。设计一种基于质心的编码方式对目标形状和骨架特征进行统一表征,利用组合判决指标实现目标识别。利用室内场景8类家具三维点云进行目标识别仿真实验,结果表明所提算法识别性能优于骨架匹配和形状上下文匹配算法,具备可行性。

关键词: 特征匹配, 三维点云, 目标识别, 小样本

Abstract:

In non-cooperative or obscured scenes, it is difficult to obtain high-quality three-dimensional (3D) point clouds, and the recognition of 3D point clouds under the condition of small samples and low signal-to-noise ratio faces challenges. Considering this, a target recognition algorithm based on shape and skeleton feature matching is proposed to solve the problems of clutter interference and target point cloud ambiguity by using semantic rule filtering and 2D mapping. A coding method based on centroid is designed to represent the shape and skeleton of the target uniformly, and the target recognition is realized by combining decision indexes. An object recognition simulation experiment is carried out by using the 3D point cloud of eight types of furniture in indoor scenes. The results show that the recognition performance of the proposed algorithm is better than that of skeleton matching algorithms and shape context matching algorithms, and it is feasible.

Key words: feature matching, three-dimensional point clouds, target recognition, small sample

中图分类号: