| 1 |
QI S H, NING X, YANG G W, et al. Review of multi-view 3D object recognition methods based on deep learning[J]. Displays, 2021, 69, 102053.
doi: 10.1016/j.displa.2021.102053
|
| 2 |
黄奕程. 基于深度学习的三维点云混合数据增强策略研究[D]. 广东: 广东工业大学, 2022.
|
|
HUANG Y C. Research on 3D point cloud mix-up data enhancement strategy based on deep learning[D]. Guangdong: Guangdong University of Technology, 2022.
|
| 3 |
马天恩, 刘涛, 杜萍, 等. 一种聚合全局上下文信息的三维点云语义分割方法[J]. 武汉大学学报(信息科学版), 2025, 50 (12): 2548- 2559.
|
|
MA T E, LIU T, DU P, et al. A 3D point cloud semantic segmentation method for aggregating global context information[J]. Geomatics and Information Science of Wuhan University, 2025, 50 (12): 2548- 2559.
|
| 4 |
朱安迪, 达飞鹏, 盖绍彦. 对融合特征敏感的三维点云识别与分割[J]. 西安交通大学学报, 2024, 58 (5): 52- 63.
|
|
ZHU A D, DA F P, GAI S Y. Recognition and segmentation of point clouds sensitive to fusion features[J]. Journal of Xi’an Jiaotong University, 2024, 58 (5): 52- 63.
|
| 5 |
张健. 基于特征描述的三维点云场景中目标识别方法研究[D]. 郑州: 郑州大学, 2022.
|
|
ZHANG J. Research on object recognition in 3D point cloud scene based on feature description[D]. Zhengzhou: Zhengzhou University, 2022.
|
| 6 |
BOULCH A, GUERRY Y, LE S B, et al. SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks[J]. Computers & Graphics, 2017, 71, 189- 198.
|
| 7 |
PUI C Y, GHIO S, NG B, et al. Robust 3D ISAR ship classification [C] // Proc. of the IEEE Radar Conference, 2023.
|
| 8 |
DEBES C, AMIN M G, ZOUBIR A M. Target detection in single- and multiple-view through-the-wall radar imaging[J]. IEEE Trans. on Geoscience and Remote Sensing, 2009, 47 (5): 1349- 1361.
doi: 10.1109/TGRS.2009.2013460
|
| 9 |
徐守坤, 张路军, 石林, 等. 意图注意力引导的小样本3D点云目标检测[J]. 计算机工程, 2024, 50(12): 288−295.
|
|
XU S K, ZHANG L J, SHI L, et al. Few-shot 3D point cloud object detection guided by intention-attention[J]. Computer Engineering, 2024, 50(12): 288−295.
|
| 10 |
HE S H, WANG Z J, WANGN Y G. CAsgraph: a cascade attention graph network using kernel density estimation based on LIDAR point clouds for 3D object detection[C] // Proc. of the 7th Asian Conference on Artificial Intelligence Technology, 2023: 266−272.
|
| 11 |
武斌, 刘溢安, 赵洁. 结合空间结构卷积和注意力机制的三维点云分类网络[J]. 中国图象图形学报, 2024, 29 (2): 520- 532.
doi: 10.11834/jig.230137
|
|
WU B, LIU Y A, ZHAO J. Classification network for 3D point cloud based on spatial structure convolution and attention mechanism[J]. Journal of Image and Graphics, 2024, 29 (2): 520- 532.
doi: 10.11834/jig.230137
|
| 12 |
LIN Y P, YEH Y M, CHOU Y C, et al. Attention EdgeConv for 3D point cloud classification[C] // Proc. of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, 2021: 2018−2022.
|
| 13 |
HAN Z Z, LU H L, LIU Z B, et al. 3D2SeqViews: aggregating sequential views for 3D global feature learning by CNN with hierarchical attention aggregation[J]. IEEE Trans. on Image Processing, 2019, 28 (8): 3986- 3999.
doi: 10.1109/TIP.2019.2904460
|
| 14 |
李乔. 基于深度学习的穿墙雷达目标检测算法研究[D]. 西安: 西安电子科技大学, 2023.
|
|
LI Q. Research on target detection algorithm of through-wall radar based on deep learning[D]. Xi’an: Xidian University, 2023.
|
| 15 |
KAMANI M M, FARHAT F, WISTAR S, et al. Skeleton matching with applications in severe weather detection[J]. Applied Soft Computing, 2018, 70, 1154- 1166.
doi: 10.1016/j.asoc.2017.05.037
|
| 16 |
NUGROHO G A, DARMAWAN S, AINA B F, et al. Automatic bow echo shape detection using combination of image processing and skeletonization in X-band radar image[C] // Proc. of the International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications, 2023: 380−385.
|
| 17 |
YIN J J Q, WANG S Y, LI F M. Division-of-focal-plane polarization image denoising algorithm based on improved principal component analysis[J]. Acta Optica Sinica, 2021, 41 (7): 64- 73.
|
| 18 |
肖骏, 梁步阁, 杨德贵, 等. 穿墙雷达墙体参数估计以及补偿方法综述[J]. 无线电工程, 2022, 52 (11): 2023- 2034.
|
|
XIAO J, LIANG B G, YANG D G, et al. Review of wall parameter estimation and compensation methods of TWR[J]. Radio Engineering, 2022, 52 (11): 2023- 2034.
|
| 19 |
ZHANG T Y, SUEN C Y. A fast parallel algorithm for thinning digital patterns[J]. Communications of the ACM, 1984, 27 (3): 236- 239.
doi: 10.1145/357994.358023
|
| 20 |
BAI X, LATECKI L J, Discrete skeleton evolution[C]// Proc. of the 6th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, 2007: 362–374.
|
| 21 |
BERG A C. Shape matching and object recognition using shape contexts[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24 (4): 509- 522.
doi: 10.1109/34.993558
|
| 22 |
VISHWANATH K V, GUPTA D, VAHDAT A, et al. ModelNet: towards a datacenter emulation environment [C]// Proc. of the IEEE 9th International Conference on Peer-to-Peer Computing, 2009: 81−82.
|
| 23 |
VISHWAKARMA S, UMMALANENI V, IQBAL M S, et al. Mitigation of through-wall interference in radar images using denoising autoencoders[C] // Proc. of the IEEE Radar Conference, 2018: 1543−1548.
|
| 24 |
ROLDAN I, FIORANELLI F, YAROYOY A. Total variation compressive sensing for 3D shape estimation in short-range imaging radars[J]. IEEE Trans. on Radar Systems, 2023, 1, 583- 592.
doi: 10.1109/TRS.2023.3322630
|
| 25 |
BARZEGAR A S, CHELDAVI A, SEDIGHY S H, et al. 3-D through-the-wall radar imaging using compressed sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19
|