系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (5): 1443-1452.doi: 10.12305/j.issn.1001-506X.2025.05.07

• 传感器与信号处理 • 上一篇    

基于深度Q学习的组网雷达闪烁探测调度方法

林志康, 施龙飞, 刘甲磊, 马佳智   

  1. 国防科技大学电子科学学院, 湖南 长沙 410073
  • 收稿日期:2024-07-10 出版日期:2025-06-11 发布日期:2025-06-18
  • 通讯作者: 施龙飞
  • 作者简介:林志康 (1997—), 男, 博士研究生, 主要研究方向为雷达电子防御、强化学习
    施龙飞 (1978—), 男, 研究员, 博士, 主要研究方向为新体制雷达、雷达电子防御
    刘甲磊 (1994—), 男, 工程师, 硕士, 主要研究方向为阵列信号处理、强化学习
    马佳智 (1987—), 男, 副研究员, 博士, 主要研究方向为雷达对抗、极化雷达信号处理

Scintillation detection scheduling method of netted radar based on deep Q-learning

Zhikang LIN, Longfei SHI, Jialei LIU, Jiazhi MA   

  1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
  • Received:2024-07-10 Online:2025-06-11 Published:2025-06-18
  • Contact: Longfei SHI

摘要:

组网雷达闪烁探测体制可以提高雷达的协同探测性能和生存率, 选择合适的雷达协同探测开机并限制单部雷达的开机暴露时间适应不断变化的环境威胁是亟待解决的问题。对此,提出一种基于深度Q学习(deep Q-learning, DQL)强化学习算法的限制单部雷达开机时间的组网雷达闪烁探测调度方法。首先建立空中干扰机对组网雷达的威胁度模型和雷达对空中干扰机的组网雷达闪烁探测模型;然后提出威胁度、组网瞬时探测概率强化学习奖励函数;最后利用提出的DQL算法求取组网雷达最佳闪烁开机决策调度方案。仿真结果表明, 所提DQL调度方法平均效益率均优于随机调度、人工蜂群调度、双深度Q网络调度方法, 且调度响应耗时较少。

关键词: 组网雷达, 闪烁探测, 强化学习, 深度Q学习, 双深度Q网络

Abstract:

The netted radar scintillation detection system can improve the cooperative detection performance and survival rate of radar. It is an urgent problem to select a suitable radar cooperative detection startup and limit the startup exposure time of a single radar to adapt to the ever-changing environmental threats. In this regard, a netted radar scintillation detection scheduling method is presented based on deep Q-learning (DQL) reinforcement learning algorithm to limit the startup time of a single radar. Firstly, the threat degree model of the air jammer to the netted radar and the scintillation detection model of the netted radar to the air jammer are established. Then, the reinforcement learning reward function of the threat degree and the netted scintillation detection probability is proposed. Finally, the optimal scintillation startup decision scheduling scheme of the netted radar is obtained by using the proposed DQL algorithm. The simulation results show that the average benefit rate of the proposed DQL scheduling method is superior to random scheduling, artificial bee colony scheduling and double deep Q network(DDQN) scheduling methods, and the scheduling response time is less.

Key words: netted radar, scintillation detection, reinforcement learning, deep Q-learning (DQL), double deep Q network (DDQN

中图分类号: