1 |
WANGX M,WANGJ L,XUY H,et al.Dynamic spectrum anti-jamming communications: challenges and opportunities[J].IEEE Communications Magazine,2020,58(2):79-85.
doi: 10.1109/MCOM.001.1900530
|
2 |
ZHOUQ,NIUY T,XIANGP,et al.Intra-domain knowledge reuse assisted reinforcement learning for fast anti-jamming communication[J].IEEE Trans.on Information Forensics and Security,2023,18,4707-4720.
doi: 10.1109/TIFS.2023.3284611
|
3 |
RUBYR,YANGH L,WUK S.Anti-jamming strategy for federated learning in Internet of medical things: a game approach[J].IEEE Journal of Biomedical and Health Informatics,2022,27(2):888-899.
|
4 |
JAITLY S, MALHOTRA H, BHUSHAN B. Security vulnerabilities and countermeasures against jamming attacks in wireless sensor networks: a survey[C]//Proc. of the International Conference on Computer, Communications and Electronics, 2017: 559-564.
|
5 |
MACHUZAK S, JAYAWEERA S K. Reinforcement learning based anti-jamming with wideband autonomous cognitive radios[C]//Proc. of the IEEE/CIC International Conference on Communications in China, 2016.
|
6 |
潘筱茜,张姣,刘琰,等.基于深度强化学习的多域联合干扰规避[J].信号处理,2022,38(12):2572-2581.
|
|
PANX Q,ZHANGJ,LIUY,et al.Multi domain joint interference avoidance based on deep reinforcement learning[J].Signal Processing,2022,38(12):2572-2581.
|
7 |
SLIMENIF,CHTOUROUZ,SCHEERSB,et al.Cooperative Q-learning based channel selection for cognitive radio networks[J].Wireless Networks,2019,25,4161-4171.
doi: 10.1007/s11276-018-1737-9
|
8 |
LIUX,XUY H,JIAL L,et al.Anti-jamming communications using spectrum waterfall: a deep reinforcement learning approach[J].IEEE Communications Letters,2018,22(5):998-1001.
doi: 10.1109/LCOMM.2018.2815018
|
9 |
吴志娟,林艳,张一晋,等.基于多智能体协同的无人机簇群多域节能抗干扰通信[J].中国科学: 信息科学,2023,53(12):2511-2526.
|
|
WUZ J,LINY,ZHANGY J,et al.Multi-agent collaboration based UAV clusters multi-domain energy-saving anti-jamming communication[J].SCIENTIA SINICA Informationis,2023,53(12):2511-2526.
|
10 |
SILVERD,HUANGA,MADDISONC J,et al.Mastering the game of go with deep neural networks and tree search[J].Nature,2016,529(7587):484-489.
doi: 10.1038/nature16961
|
11 |
NGUYEN P K H, NGUYEN V H, DO V L. A deep double-Q learning-based scheme for anti-jamming communications[C]//Proc. of the 28th European Signal Processing Conference, 2021: 1566-1570.
|
12 |
VANH N,HOANGD T,NGUYEND N,et al.DeepFake: deep dueling-based deception strategy to defeat reactive jammers[J].IEEE Trans.on Wireless Communications,2021,20(10)):6898-6914.
|
13 |
XIAOL,ZHANGH L,XIAOY L,et al.Reinforcement learning-based downlink interference control for ultra-dense small cells[J].EEE Trans.on Wireless Communications,2020,19(1):423-434.
doi: 10.1109/TWC.2019.2945951
|
14 |
YANGH L,ZHAOJ,LAMK Y,et al.Distributed deep reinforcement learning-based spectrum and power allocation for heterogeneous networks[J].IEEE Trans.on Wireless Communications,2022,21(9):6935-6948.
doi: 10.1109/TWC.2022.3153175
|
15 |
XIAOL,DINGY Z,HUANGJ H,et al.UAV anti-jamming video transmissions with QoE guarantee: a reinforcement learning-based approach[J].IEEE Trans.on Communications,2021,69(9):5933-5947.
doi: 10.1109/TCOMM.2021.3087787
|
16 |
LUX Z,XIAOL,DAIC H,et al.UAV-aided cellular communications with deep reinforcement learning against jamming[J].IEEE Wireless Communications,2020,27(4):48-53.
doi: 10.1109/MWC.001.1900207
|
17 |
FANC Q,LIUH Y,LIB,et al.Adversarial game against hybrid attacks in UAV communications with partial information[J].IEEE Trans.on Vehicular Technolog,2021,71(2):2204-2208.
|
18 |
NOORIH,SADEGHIV S.Jamming and anti-jamming in interference channels: a stochastic game approach[J].IET Communications,2020,14(4):682-692.
doi: 10.1049/iet-com.2019.0637
|
19 |
WANGB B,WUY L,LIUK J R,et al.An anti-jamming stochastic game for cognitive radio networks[J].IEEE Journal on Selected Areas in Communications,2011,29(4):877-889.
doi: 10.1109/JSAC.2011.110418
|
20 |
LIW,XUY H,CHENJ,et al.Know the enemy: an opponent modeling-based anti-intelligent jamming strategy beyond equilibrium solutions[J].IEEE Wireless Communications Letters,2022,12(2):217-221.
|
21 |
AL-SHEDIVAT M, BANSAL T, BURDA Y, et al. Continuous adaptation via meta-learning in nonstationary and competitive environments[EB/OL]. [2014-02-01]. https://arxiv.org/abs/1710.03641.
|
22 |
THUENTE D, ACHARYA M. Intelligent jamming in wireless networks with applications to 802.11 b and other networks[C]// Proc. of the IEEE Military Communications Conference, 2006.
|
23 |
GLEAVE A, DENNIS M, WILD C, et al. Adversarial policies: attacking deep rein-forcement learning[EB/OL]. [2014-02-01]. https://arxiv.org/abs/1905.10615.
|
24 |
LIY Y,WANGX M,LIUD X,et al.On the performance of deep reinforcement learning-based anti-jamming method confronting intelligent jammer[J].Applied Sciences,2019,9(7):1361.
doi: 10.3390/app9071361
|
25 |
MNIH V, KAVUKCUOGLU K, SILVER D, et al. Playing atari with deep reinforcement learning[EB/OL]. [2014-02-01]. https://arxiv.org/abs/1312.5602.
|
26 |
VAN H H, GUEZ A, SILVER D. Deep reinforcement learning with double Q -learning[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2016.
|
27 |
WANG Z Y, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning[C]//Proc. of the International Conference on Machine Learning, 2016: 1995-2003.
|
28 |
HE H, BOYD-GRABER J, KWOK K, et al. Opponent modeling in deep reinforcement learning[C]//Proc. of the International Conference on Machine Learning, 2016: 1804-1813.
|
29 |
赵天昊. 动态博弈环境下的隐式对手建模方法[D]. 大连: 大连理工大学, 2021.
|
|
ZHAO T H. A method for modeling implicit opponents in dynamic game environments[D]. Dalian: Dalian University of Technology, 2021.
|
30 |
EYRE-WALKERA.Changing effective population size and the McDonald-Kreitman test[J].Genetics,2002,162(4):2017-2024.
doi: 10.1093/genetics/162.4.2017
|
31 |
SLIMENIF,SCHEERSB,CHTOUROUZ,et al.Cognitive radio jamming mitigation using Markov decision process and reinforcement learning[J].Procedia Computer Science,2015,73,199-208.
|