1 |
KLEMM V , MORRA A , GULICH L , et al. LQR-assisted whole-body control of a wheeled Bipedal, robot with kinematic loops[J]. IEEE Robotics and Automation Letters, 2020, 5 (2): 3745- 3752.
doi: 10.1109/LRA.2020.2979625
|
2 |
WANG S, CUI L L, ZHANG J, et al. Balance control of a novel wheel-legged robot: design and experiments[C]//Proc. of the IEEE International Conference on Robotics and Automation, 2021: 6782-6788.
|
3 |
B. Dynamics. Handle[EB/OL]. [2022-02-18]. https://www.youtube.com/watch?v=-7xvqQeoA8c.
|
4 |
DE VIRAGH Y , BJELONIC M , BELLICOSO C D , et al. Trajectory optimization for wheeled-legged quadrupedal robots using linearized ZMP constraints[J]. IEEE Robotics and Automation Letters, 2019, 4 (2): 1633- 1640.
doi: 10.1109/LRA.2019.2896721
|
5 |
BJELONIC M , BELLICOSO C D , VIRAGH Y D , et al. "Keep rollin"—whole-body motion control and planning for wheeled quadrupedal robots[J]. IEEE Robotics and Automation Letters, 2019, 4, 22116- 2123.
|
6 |
BJELONIC M , SANKAR P K , BELLICOSO C D , et al. Rolling in the deep-hybrid locomotion for wheeled-legged robots using online trajectory optimization[J]. IEEE Robotics and Automation Letters, 2022, 5 (2): 3626- 3633.
|
7 |
WANG S K , CHEN Z H , LI J H , et al. Flexible motion framework of the six wheel-legged robot: experimental results[J]. IEEE/ASME Trans.on Mechatronics, 2021, 27 (4): 2246- 2257.
|
8 |
ZHANG C, LI X L, ZHU X Q, et al. A step-climbing strategy of hexapod robot with eccentric wheel legs[C]//Proc. of the IEEE 7th Data Driven Control and Learning Systems Conference, 2018: 426-430.
|
9 |
KLEMM V, MORRA A, SALZMANN C, et al. Ascento: a two-wheeled jumping robot[C]//Proc. of the IEEE/RSJ International Conference on Robotics and Automation, 2019: 7515-7521.
|
10 |
CHEN S X, ROGERS J, ZHANG B K, et al. Feedback control for autonomous riding of hovershoes by a cassie bipedal robot[C]//Proc. of the IEEE-RAS 19th International Conference on Humanoid Robots, 2019.
|
11 |
CUI L L , WANG S , ZHANG J F , et al. Learning-based balance control of wheel-legged robots[J]. IEEE Robotics and Automation Letters, 2021, 6 (4): 7667- 7674.
doi: 10.1109/LRA.2021.3100269
|
12 |
SUGAYA J, OHBA Y, KANMACHI T, et al. Simulation of standing upright control of an inverted pendulum using inertia rotor and the swing type inverted pendulum for engineering education[C]//Proc. of the International Conference on Information Technology and Electrical Engineering, 2017.
|
13 |
EINI R, ABDELWAHED S. Rotational inverted pendulum controller design using indirect adaptive fuzzy model predictive control[C]//Proc. of the IEEE International Conference on Fuzzy Systems, 2019.
|
14 |
XIN Y, XU J, XU B, et al. The inverted-pendulum model with consideration of pendulum resistance and its LQR controller[C]//Proc. of the International Conference on Electronic & Mechanical Engineering and Information Technology, 2011: 3438-3441.
|
15 |
张弨. 双足轮腿机器人系统设计与运动控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
ZHANG Z. Bipedal wheel-legged robot system design and motion control research[D]. Harbin: Harbin Institute of Technology, 2020.
|
16 |
纪胜昊. 两足轮腿机器人系统研制及模型预测控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
|
|
JI S H. Development of bipedal wheel-legged robot system and model predictive control method[D]. Harbin: Harbin Institute of Technology, 2021.
|
17 |
FUJIMOTO S, VAN H H, MEGER D. Addressing function approximation error in actor-critic methods[EB/OL]. [2022-02-18]. https://arxiv.org/abs/1802.09477.
|
18 |
LOPES D S J. NASCIMENTO C L. Gait synthesis of a hybrid legged robot using reinforcement learning[C]//Proc. of the Annual IEEE Systems Conference, 2015: 439-444.
|
19 |
WONG C C , CHIEN S Y , FENG H M , et al. Motion planning for dual-arm robot based on soft actor-critic[J]. IEEE Access, 2021, 9, 26871- 26885.
doi: 10.1109/ACCESS.2021.3056903
|
20 |
TOTANI M, SATO N, MORITA Y. Step climbing method for crawler type rescue robot using reinforcement learning with proximal policy optimization[C]//Proc. of the 12th International Workshop on Robot Motion and Control, 2019: 154-159.
|
21 |
VASQUEZ-JALPA C, NAKANO-MIYATAKE M, ESCAMILLA-HERNANDEZ E. A deep reinforcement learning algorithm based on modified twin delay DDPG method for robotic applications[C]//Proc. of the 21st International Conference on Control, Automation and Systems, 2021: 743-748.
|
22 |
WANG M C, RUAN X G, ZHU X Q. Heuristic gait learning of quadruped robot based on deep deterministic policy gradient algorithm[C]//Proc. of the Chinese Automation Congress, 2020: 1046-1049.
|
23 |
闫安, 陈章, 董朝阳, 等. 基于模糊强化学习的双轮机器人姿态平衡控制[J]. 系统工程与电子技术, 2021, 43 (4): 1036- 1043.
|
|
YAN A , CHEN Z , DONG C Y , et al. Attitude balance control of two-wheeled robot based on fuzzy reinforcement learning[J]. Systems Engineering and Electronics, 2021, 43 (4): 1036- 1043.
|
24 |
XIN S Y, VIJAYAKUMAR S. Online dynamic motion planning and control for wheeled biped robots[C]//Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020: 3892-3899
|
25 |
赵玉婷, 韩宝玲, 罗庆生. 基于deep Q-network双足机器人非平整地面行走稳定性控制方法[J]. 计算机应用, 2018, 38 (9): 2459- 2463.
|
|
ZHAO Y T , HAN B L , LUO Q S , et al. Stability control method for walking on non-level ground based on deep Q-network bipedal robot[J]. Computer Applications, 2018, 38 (9): 2459- 2463.
|
26 |
ZHANG Y C, WANG T, TAN N, et al. Open-loop motion control of a hydraulic soft robotic arm using deep reinforcement learning[C]//Proc. of the Intelligent Robotics and Applications, 2021: 13013.
|
27 |
冯春, 张祎伟, 黄成, 等. 双足机器人步态控制的深度强化学习方法[J]. 计算机集成制造系统, 2021, 27 (8): 2341- 2349.
|
|
FENG C , ZHANG Y W , HUANG C , et al. Deep reinforcement learning method for gait control of bipedal robots[J]. Computer Integrated Manufacturing Systems, 2021, 27 (8): 2341- 2349.
|
28 |
LILLICRAP T P. Continuous control with deep reinforcement learning[EB/OL]. [2022-02-18]. https://arxiv.org/abs/1509.0297/v6.
|
29 |
SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms[C]//Proc. of the 31st International Conference on Machine Learning, 2014: 605-619.
|
30 |
周友行, 赵晗妘, 刘汉江, 等. 采用DDPG的双足机器人自学习步态规划方法[J]. 计算机工程与应用, 2021, 57 (6): 254- 259.
|
|
ZHOU Y X , ZHAO H Y , LIU H J , et al. A self-learning gait planning method for bipedal robots using DDPG[J]. Computer Engineering and Applications, 2021, 57 (6): 254- 259.
|
31 |
HEESS N. Emergence of locomotion behaviours in rich environments[EB/OL]. [2022-02-18]. https://arxiv.org/abs/1707.02286.
|